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Floating Point Numbers

Numerical Computation in our case is:

A computer approximation of some mathematical value/problem, usually dealing with
(approximate) real numbers

Analytical solutions are the exact solutions while numerical solutions are approximate solutions.

Representing Values from R

Real numbers, R, are

• Infinite in extent : ∃x ∈ R such that |x| is arbitrarily large

• Infinite in density : ∀a, b ∈ R if a < b then there are infinitely many x ∈ R that satisfy a ≤ x ≤ b

It is impossible to encode the reals with only a finite number of bits so we approximate by:

1. Multiply by power of β (base of the number representation) to shift into normalized form:

d1d2d3d4 · · · = 0.d1d2d3d4 · · · × βp where d1 ̸= 0

2. Convert into some specific floating point system F characterized by 4 integer parameters {β, t, L, U}:

±0.d1d2 · · · dt × βp for L ≤ p ≤ U and d1 ̸= 0 (special case for 0)

• Density (or precision) is bounded by limited number of digits using t

• Extent (or range) is bounded by limiting range of value for exponent p

We are only considering two rounding modes when converting from R to floating point

• Round-to-nearest: round to closest number in F (default option)

• Truncation: discard digits after the tth

Overflow and Underflow

When exponent p is too large (> U) or too small (< L) our system simply cannot represent the number.

• For underflow, simply round answer to 0

• For overflow, we produce a ±∞ (or NaN - not a number)

Floating Point Standards

The IEEE created two of the most common standard floating point systems

• Single precision (32 bits): {β = 2, t = 24, L = −126, U = 127}

• Double precision (64 bits): {β = 2, t = 53, L = −1023, U = 1023}

Arithmetic using these are always implemented directly in hardware (CPU/GPU/etc)
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Floating Point Density

It is important to remember that unlike fixed point, floating point number are not evenly spaced!

For example: F = {β = 2, t = 3, L = −1, U = 2} will represent non-negative values spaced as

0, 0.100× 2−1, 0.101× 2−1, 0.110× 2−1, 0.111× 2−1, 0.100× 20, 0.101× 20, · · · , 0.111× 22

Floating Point Error

We will look at two ways to measure error:

• Absolute error: actual distance from exact to approximation

Eabs = |xexact − xapprox|

• Relative Error: distance from exact to approximation relative to size of exact value

Erel =
|xexact − xapprox|

|xexact|

A rough rule of thumb: a result is correct to roughly s digits after rewriting Erel as

0.5× 10−s ≤ Erel < 5× 10−s

Some examples:

• Erel ≈ 0.4× 10−3 = 4× 10−4 implies 4 correct digits in xapprox

• Erel ≈ 4× 102 implies −2 correct digits (or no correct digits) in xapprox

Machine Epsilon

Machine Eplison E is the largest relative error in the conversion from real to floating point

• It is defined as the smallest E such that fl(1 + E) > 1

• for a FP system F = {β, t, L, U} with

– rounding during conversion: E = 1
2β

1−t

– truncating during conversion: E = β1−t

• This means we can say that for any x ∈ R in the range of F that

fl(x) = x(1 + δ) for some |δ| ≤ E
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Arithmetic with Floating Point

The IEEE standard requires that for w, z ∈ F

w ⊕ z = fl(w + z) = (w + z)(1 + δ) for some |δ| ≤ E

To perform addition we add w and z as if they were real then convert to our floating point approximation.

• The result is the same as the floating point approximation of the exact real result

• This is done in hardware by keeping extra "guard" digits to ensure this result

• This is in the same way for other operations like ⊗ and ⊖

However this only applies to individual FP operations so it is not true that:

(a⊕ b)⊕ c = a⊕ (b⊕ c) = fl(a+ b+ c)

Since we evaluate

(a⊕ b)⊕ c = ((a+ b)(1 + δ1) + c)(1 + δ2) a⊕ (b⊕ c) = (a+ (b+ c)(a+ δ1))(1 + δ2)

This means that the result is order dependent and associativity is broken.

Error Bounds

for a, b, c ∈ F consider the relative error of (a⊕ b)⊕ c

Erel =
|(a⊕ b)⊕ c− (a+ b+ c)|

|a+ b+ c|

=
|((a+ b)(1 + δ1) + c)(1 + δ2)− a− b− c)|

|a+ b+ c|

=
|(a+ b)δ1 + (a+ b+ c)δ2 + (a+ b)δ1δ2|

|a+ b+ c|

≤ |(a+ b)δ1|+ |(a+ b+ c)δ2|+ |(a+ b)δ1δ2|
|a+ b+ c|

(by triangle inequality)

≤ |a+ b||δ1|+ |a+ b||δ1δ2|
|a+ b+ c|

+ |δ2|

≤ |a+ b|(E + E2)

|a+ b+ c|
+ E

We will now weaken the bound so that the error applies to both (a⊕ b)⊕ c and a⊕ (b⊕ c)

Erel ≤
|a+ b|(E + E2)

|a+ b+ c|
+

|a+ b+ c|
|a+ b+ c|

E

≤ |a|+ |b|+ |c|
|a+ b+ c|

(E + E2) +
|a|+ |b|+ |c|
|a+ b+ c|

E (by triangle inequality and adding |c|)

≤ |a|+ |b|+ |c|
|a+ b+ c|

(2E + E2)

This bound is for the worst case (actual error could be much less)
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Cancellation Errors

The worst case for the bounds is when quantities have differing signs and similar magnitudes

• If a, b, c have same signs then |a|+|b|+|c|
|a+b+c| = 1

• If a, b, c have different signs then |a|+|b|+|c|
|a+b+c| ≥ 1 (can grow very large if a+ b+ c ≈ 0)

Catastrophic cancellation occurs when subtracting same magnitude numbers that contain some error

All significant digits cancelled out and we are left with no correct digits at all.

Floating Point Rule of Thumbs

Rule of thumb: prefer adding numbers of approximately the same size and sign

• adding large and small numbers can cause the smaller digits to get lost or "swamped"

Rule of thumb: try to reformulate computations to avoid cancellations

• catastrophic cancellation could occur from subtracting numbers of simular magnitude

Taylor series example: to evaluate e−5.5 in FP we have

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · or e−x =

1

ex
=

1

1 + x+ x2

2! +
x3

3! + · · ·

e−5.5 = 0.0040868 and with 5 digits of accuracy we see that RHS performs much better

• using x = −5.5 on the LHS we have e−5.5 ≈ 0.0026363

• using x = 5.5 on the RHS we ahve e−5.5 ≈ 0.0040865

Using IEEE double precision we compare f(x) = 1−cos2 x
x2 and g(x) = sin2 x

x2 near x = 0

The true solution is to approach 1 as x → 0 however f(x) behaves erratically since cos2 x approachs 1
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Sources of Errors

We will mainly focus on the first two

• Round-off error: due to FP representation and arithmetic

• Truncation error: e.g. truncating a Taylor series after n terms

• Uncertainty/error in input: e.g. from measurements

• Error/approximation in mathematical model: e.g. friction

Conditioning and Stability

Conditioning of a problem:

• How sensitive is the problem to changes in input? less → well-conditioned more → ill-conditioned

Stability of numerical algorithm:

• How sensitive is the algorithm to errors/changes in input? less → stable more → unstable

Note that:

• An poor algorithm can be unstable even for a well-conditioned problem

• An ill-conditioned problem limits how well we can expect any algorithm to perform

Stability Analysis

We can rewrite the integration problem as a recursive rule

In =

∫ 1

0

xn

x+ α
dx → I0 = log

1 + α

α
In =

1

n
− αIn−1

Assume some initial error in E0 in I0 where

E0 = (I0)A︸ ︷︷ ︸
approx

− (I0)E︸ ︷︷ ︸
exact

then the (signed) error En after n steps will be

En = (In)A − (In)E

= ( 1n − α(In−1)A)− ( 1n − α(In−1)E)

= −α((In−1)A − (In−1)E)

= −αEn−1

Thus we have En = (−α)nE0 so we have two cases

• |α| ≤ 1 error does not grow - stable

• |α| > 1 error grows continiually - unstable
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Interpolation

Given a set of points from unknown function y = p(x) how do we approximate p’s values at other points

• Known: p(x1) = y1, p(x2) = y2, . . . , p(xn) = yn

• Estimate: y = p(x) for any point x such that x1 ≤ x ≤ xn

Polynomial Interpolation

Unisolvence Theorem: Given n data pairs (xi, yi), i = 1, . . . , n with distinct xi there is a unique
polynomial p(x) of degree ≤ n− 1 that interpolates the data.

Vandermonde Matrices

For 3 data points we find the 3 unknown coefficients a, b, c that form the quadratic

y = a+ bx+ cx2

Each data point gives 1 linear equation so we a 3× 3 system

a+ bx1 + cx21 = y1
a+ bx2 + cx22 = y2
a+ bx3 + cx23 = y3

→

1 x1 x21
1 x2 x22
1 x3 x23

ab
c

 =

y1y2
y3


In general for n points we have a linear system V c⃗ = y⃗ where V is the Vandermonde matrix

1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n



c1
c2
...
cn

 =


y1
y2
...
yn


Polynomial interpolation reduces to solving this linear system of equations.

The Monomial Basis

The form p(x) = c1 + c2x+ · · ·+ cnx
n−1 is called monomial form and can be written as

p(x) =

n∑
i=1

cix
i−1

• Monomial basis: the sequence 1, x, x2, . . .

• Monomial form: sum of coefficients cI times basis functions xi−1

The Lagrange Basis

For the Lagrange method of interpolating polynomials we construct p by using

p(x) = y1L1(x) + y2L2(x) + · · ·+ ynLn(x) =

n∑
k=1

ykLk(x)

Given n data points (xi, yi) we define the Lagrange basis function Lk(x) to be

Lk(x) =
(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
→ Li(xj) =

{
1 i = j

0 i ̸= j
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This property forces p(x) to interpolate every xi since

p(xi) = y1L1(xi) + · · ·+ yiLi(xi) + · · ·+ ynLn(xi)

= y1 × 0 + · · ·+ yi × 1 + · · ·+ yn × 0

This results in a polynomial that satisfies p(xi) = yi for i = 1, . . . , n by construction

Example: Linear System and Lagrange Polynomials

Find the linear polynomial that interpolates the points (x1, y1) = (1, 2) and (x2, y2) = (−1, 4)

• We can solve the linear system of equations c1 + c2x1 = y1 and c1 + c2x2 = y2[
1 x1
1 x2

] [
c1
c2

]
=

[
y1
y2

]
→

[
1 1 | 2
1 −1 | 4

]
→

[
2 0 | 6
−1 1 | −4

]
→

[
1 0
0 1

] [
c1
c2

]
=

[
3
−1

]
We get c1 = 3 and c2 = −1 for the monomial form p(x) = c1 + c2x which results in p(x) = 3− x

• We can also solve this using the Lagrange Basis

L1(x) =
(x− x2)

(x1 − x2)
=

x− (−1)

1− (−1)
=

x+ 1

2
L2(x) =

(x− x1)

(x2 − x1)
=

x− 1

−1− 1
=

x− 1

−2

Using these for the Lagrange form p(x) = y1L1(x) + y2L2(x) we get

p(x) = 2
x+ 1

2
+ 4

x− 1

−2
= 3− x

We find that both methods result in the same solution of p(x) = 3− x. However we still prefer using the
Lagrange basis to the monomial basis because it avoids needing to solve a linear system.

Polynomial Interpolation for Many Points

Consider fitting a degree 10 polynomial to 11 points sampled evenly from f(x) = 1
1+25x2 :

Notice the excessive wiggling at the ends, this example of overfitting is called Runge’s phenomenon.

Instead of using a single high degree polynomial we could instead create a piecewise function consisting of
multiple lower degree polynomials.

11



Hermite Interpolation

Although interpolation with piecewise linear can produce a continuous function it is not "smooth" enough

This function is in C0, which is to say it is continuous but the derivatives might not be.

Hermite interpolation gets more smoothness by fitting the polynomial to both values and deriatives to
achieve C1, which is function and first derivative continuity.

Vandermonde Approach for Hermite Interpolation

For polynomials with higher derivative data we will use a simular approach to before:

1. Express polynomial p(x) in general form with unknown coefficients

2. Differentiate to find expressions for needed derivatives of p(x)

3. Plug in the value and derivative data to give linear equations

4. Solve for the polynomial coefficients

Usage: find the coefficients of the cublic polynomial p(x) = a+ bx+ cx2 + dx3 using the Hermite data

p(x1) = y1 p′(x1) = s1 p(x2) = y2 p′(x2) = s2

Find p′(x) = b+ 2cx+ 3dx2 then create a system of linear equations using the data
1 x1 x21 x31
1 x2 x22 x32
0 1 2x1 3x21
0 1 2x2 3x22



a
b
c
d

 =


y1
y2
s1
s2


Piecewise Hermite Interpolation: Create one cubic function per pair of adjacent x values. Then by
construction the value and derivative of the endpoints of cubic are shared and the piecewise function will
have C1 continuity.

Closed-Form Solution for Hermite Interpolation

p(xi) = yi p′(xi) = si p(xi+1) = yi+1 p′(xi+1) = si+1

We define the cubic polynomial on the i-th interval (between xi and xi+1) to be pi(x) where

pi(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

p′i(x) = bi + 2ci(x− xi) + 3di(x− xi)
2

12



Plugging in the data

yi = pi(xi) = ai

si = p′i(xi) = bi

yi+1 = p′i(xi+1) = ai + bi(xi+1 − xi) + ci(xi+1 − xi)
2 + di(xi+1 − xi)

3

si+1 = p′i(xi+1) = bi + 2ci(xi+1 − xi) + 3di(xi+1 − xi)
2

Solving this system gives

ai = yi bi = si ci =
3y′i − 2si − si+1

∆xi
di =

−2y′i + si + si+1

∆x2i

∆xi = xi+1 − xi y′i =
yi+1 − yi

∆xi

We can now solve a cubic Hermite problem directly note that pi(x) will usually need to be simplified.

• Knots: points where interpolant transitions from one polynomial/interval to another

• Nodes: points where some control points/data is specified

For Hermite interpolation these are the same but for other curve types (Ex Bezier curves) they can differ

Cubic Spline Interpolation

Hermite interpolation requires info on derivative values but we want to create a curve out of a set of
points. For cubic spline interpolation fit a cubic Si(x) on each interval while requiring matching first
and second derivatives (C2 continuity) between intervals.

Require interpolating conditions on each interval [xi, xi+1]

Si(xi) = yi Si(xi+1) = yi+1

and derivative conditions are each interior point xi+1

S′
i(xi+1) = S′

i+1(xi+1)

S′′
i (xi+1) = S′′

i+1(xi+1)

Counting Unknowns and Equations

A cubic has 4 unknowns per interval and n− 1 intervals (for n points) so there are 4n− 4 unknowns.

• 2 interpolation (endpoint) conditions per interval : 2(n− 1) = 2n− 2

Si(xi) = yi Si(si+1) = yi+1

• 2 derivative conditions per interior point (between first and last points): 2(n− 2) = 2n− 4

S′
i(xi+1) = S′

i+1(xi+1) S′′
i (xi+1) = S′′

i+1(xi+1)

This gives us 4n− 6 equations which is less than the 4n− 4 unknowns so there is not enough information
for a unique solution.

To solve this we need 2 more equations (constraints) which we usually put at domain endpoints (the
beginning and end) called boundary conditions or end conditions.

13



Boundary Conditions (BC)

• Clamped: slope are set to some value (both boundaries: complete or clamped spline)

S′(x1) = specified S′(xn) = specified

• Free: second derivatives are set to zero (both boundaries: natrual cubic spline)

S′(x1) = 0 S′′(xn) = 0

• Periodic: match start and end derivatives (wrap-around behaviour)

S′(x1) = S′(xn) S′′(x1) = S′′(xn)

• Not-a-knot: match 3rd derivatives on end segments (second last and second point are not knots)

S′′′
1 (x2) = S′′′

2 (x2) S′′′
n−2(xn−1) = S′′′

n−1(xn−1)

Efficient Construction of Cubic Splines via Hermite Interpolation

For a general linear system Gaussain elimination takes O(N3) time however cubic splines produces a
special linear system that can be solved in O(N) time.

• Hermite Interpolation: solve n− 1 separate systems of 4 equations

• Cubic Splines: solve 1 system of 4(n− 1) equations

Cubic Splines via Hermite Interpolation

We use Hermite interpolation as a stepping stone to build a cubic spline

Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

S′
i(x) = bi + 2ci(x− xi) + 3di(x− xi)

2

S′′
i (x) = 2ci + 6di(x− xi)

If we use the closed form Hermite and force S′′
i (xi+1) = S′′

i+1(xi+1) we can satisfy the cubic spline definition

S′′
i (xi+1) = 2

(
3y′i − 2si − si+1

∆xi

)
+ 6

(
−2y′i + si + si+1

∆x�2i

)
������
(xi+1 − xi)

S′′
i+1(xi+1) = 2

(
3y′i+1 − 2si+1 − si+2

∆xi+2

)
+ 6

(−2y′i+1 + si+1 + si+2

∆x2i+2

)
�������:0
(xi+1 − xi+1)

S′′
i (xi+1) = S′′

i+1(xi+1)

−6y′i + 2si + 4si+1

∆xi
=

6y′i+1 − 4si+1 − 2si+2

∆xi+1

∆xi+1si + 2(∆xi +∆xi+1)si+1 +∆xisi+2 = 3(∆xi+1y
′
i +∆xiy

′
i+1)

∆xisi−1 + 2(∆xi−1 +∆xi)si +∆xi−1si+1 = 3(∆xiy
′
i−1 +∆xi−1y

′
i) (reindex)

After solving for si we plug them into the closed form Hermite equations to get ai, bi, ci, di that also
match the interval endpoint data and first derivative.

Remark: si is the slope at node i while Si(x) is the polynomial at interval i
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Efficient Splines Summary

For i = 2 to n− 1 we have the equation

∆xisi−1 + 2(∆xi−1 +∆xi)si +∆xi−1si+1 = 3(∆xiy
′
i−1 +∆xi−1y

′
i)

For the 2 boundary conditions for the ends i = 1 and i = n

• Clamped: slope is set to some value

S′
1(x1) = specified S′

n−1(xn) = specified → s1 = S′
1(x1) sn = S′

1(xn)

• Free: zero for the 2nd derivative at the ends

S′′
1 (x1) = 0 S′′

n−1(xn) = 0 → s1 +
1

2
s2 =

3

2
y′1

1

2
sn−1 + sn =

3

2
y′n−1

After solving plug si into the closed-form Hermite expression for each interval

Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

ai = yi bi = si ci =
3y′i − 2si − si+1

∆xi
di =

−2y′i + si + si+1

∆x2i

∆xi = xi+1 − xi y′i =
yi+1 − yi

∆xi

Example Problem

Fit a spline to 4 points (0, 1), (2, 1), (3, 3), (4,−1) with clamped BC of S′
1(x1) = 1 and S′

3(x4) = −1

Computing ∆xi and y′i for intervals i = 1 to 3

∆x1 = 2 ∆x2 = 1 ∆x3 = 1 y′1 = 0 y′2 = 2 y′3 = −4

Then we construct a system Ts = r

• i = 1 is a boundary
s1 = 1 T1 =

[
1 0 0 0

]
r1 = 1

• i = 2 is an interior point

s1 + 2(2 + 1)s2 + 2s3 = 3(1− 0 + 2 · 2) → s1 + 6s2 + 2s3 = 12

T2 =
[
1 6 2 0

]
r2 = 12

• i = 3 is an interior point

s2 + 2(1 + 1)s3 + s4 = 3(1 · 2 + 1 · −4) → s2 + 4s3 + s4 = −6

T3 =
[
0 1 4 1

]
r3 = −6

• i = 4 is a boundary
T4 =

[
0 0 0 1

]
r4 = −1

Now we have the system 
1 0 0 0
1 6 2 0
0 1 4 1
0 0 0 1



s1
s2
s3
s4

 =


1
12
−6
−1


After solving for si and plugging into Hermite closed form we will have the coefficents for Si(x)
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Efficient Splines Matrix Structure

Notice that matrix T is tridiagonal meaning it only has entries on the diagonals and its neighbours.
X X
X X X

X X X
X X X

X X


A tridiagonal matrix is one type of sparse matrix and we only need a vector of 3-tuples to store it. In
addition, we will later figure out how to solve this system much faster than general systems.

Parametric Curves

So far we have only handled functions y = p(x) but what if we want a curve that folds back over itself
(multiple outputs at a single x)

Parametric curves will allow us to handle this more general case:

• Let x and y each be separate function of a new parameter t

• Then a point’s position is given by a vector

⃗P (t) = (x(t), y(t))

we say the curve is parameterized by t which can be thought of as time (still only plot x and y)

• Parametric curves are not a specific type of curve but a way of using curves like piecewise linear,
Hermite, cubic splines, Bezier, etc

Example: for a semi-circle the implicit equation is x2 + y2 = 1 and some parametric forms are:

• (x(t), y(t)) = (cos(πt), sin(πt)) for 0 ≤ t ≤ 1

• (x(t), y(t)) = (cos(π(1− t)), sin(π(1− t))) for 0 ≤ t ≤ 1

• (x(t), y(t)) = (cos(πt2), sin(πt2)) for 0 ≤ t ≤ 1

The curve is parameterized in different ways that give the same result
(for full circle we just change the bounds to 0 ≤ t ≤ 2)

Arc-Length Parameterization

A common parameterization is to choose t as the distance along the curve.
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For piecewise polynomials we can estimate this by taking the distance between two nodes:

t1 = 0 ti+1 = ti +
√
(xi+1 − xi)2 + (yi+1 − yi)2

Using this parameterization we then:

• Compute how the spline changes in the x direction over t

• Compute how the spline changes in the y direction over t

• Plot the resulting x and y values
1 # convert input points in to a numpy array then split x and y values
2 arr = np.array(input)
3 n = arr.shape[0]
4 x_arr = arr[:,0]
5 y_arr = arr[:,1]
6

7 # generate approximate arc-length parameterization
8 t = [0]
9 for i in range(1, n):

10 t.append(t[i-1] + sqrt((x_arr[i] - x_arr[i-1])**2 + (y_arr[i] - y_arr[i-1])**2))
11

12 # use approximate arc-length parameterization to create splines
13 xspline = make_interp_spline(t, x_arr)
14 yspline = make_interp_spline(t, y_arr)
15 v = np.linspace(0, np.amax(t), 250) # could replace np.amax(t) with t[-1]
16 xs = xspline(v)
17 ys = yspline(v)
18

19 plt.plot(xs, ys)

Going beyond

Curves to Surfaces ideas for smooth curves can be generalized to 2D surfaces in 3D for example some
commond surface types in comptuer aided design (CAD) include:

• Non-Uniform Rational B-splines (NURB)

A NURB surface with its control mesh of nodes

• Subdivision Surfaces

17



Cube mesh being subdivided recursively to form smooth subdivision surface

At Waterloo Professor Steve Mann studies applications of splines in CAD and 5-axis machining.

There is also the graduate level course "CS 779 Splines" to learn lots more.

Ordinary Differential Equations (ODE)

Differential equations relate some unknown function to its derivatives. They have many applications from
modeling physical systems to predicting the market. In this course we will not be solving the ODEs
analytically instead we will attempt to use numerical methods to find approximate solutions.

In general a first order ODE will have the form:

y′(t) = f(t, y(t))

At any particular time t

• know the direction and magnitude that y is going

• don’t know what the value of y is

Consider the simplest ODE y′(t) = α · y(t) this has a closed form solution

y(t) = y0 · eα(t−t0) ↔ y(t) = Ceαt

We see that at any particular time t

• direction of mouse population is a constant α times the current number of mice y(t)

• number of mice cannot be said until we know number of mice at some other time

Initial Value Problems (IVP) will give the value of y at time t0 to be some constant y0

y′(t) = f(t, y(t)) (f is Dynamics Function) y(t0) = y0 (Initial Conditions)

System of Differential Equations: a model with multiple variables that interact with each other
(Ex: (x, y) coordinate of some moving object)

Two dynamics functions:
[
x(t)
y(t)

]′
=

[
fx(t, x(t), y(t))
fy(t, x(t), y(t))

]
Two initial conditions:

[
x(t0)
y(t0)

]
=

[
x0
y0

]
Time Stepping: method of numerically solving ODEs given some initial conditions by repeatedly making
steps of size h each time and using y′ to update the y value.

• Begin: n = 0, t = t0, y = y0
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• Repeat: compute yn+1 using y and y′, increment time tn+1 = tn + h, advance n = n+ 1

There are several different varieties of time-stepping methods:

• Single-step vs Multistep: only use information from current step, or from previous timesteps as well

• Explicit vs Implicit: can we evalute yn+1 directly, or do we need to solve some implicit equation

• Timestep size: do we use a constant timestep h, or allow it to vary

Forward Euler Time-Stepping

Forward Euler is very simple explicit and single-step scheme that just repeats the following:

• Compute the current slope
y′n = f(tn, yn)

• Step in a straight line with that slope:

yn+1 = yn + h · y′n

This can be rewritten as into a recurrence relationship (note that y0 should be a given):

yn+1 = yn + hf(tn, yn)

This directly gives a new value yn+1 at the new time tn+1 = tn + h

Note: at every step we know value yn, time tn, time step h, and get the slope by evaluting f

Forward Euler Examples

First Example
y′(t) = 2y(t) y(t0) = y0 = 3 t0 = 0

The analytical solution for this is y(t) = 3e2t

FE with step size h = 1 until t = 3

yn+1 = yn + (1)(2yn) = 3yn

n tn yn y(tn)

0 0 3 3
1 1 9 22.2
2 2 27 163.8
3 3 81 1210

FE with step size h = 1
2 until t = 3

yn+1 = yn + (12)(2yn) = 2yn

n tn yn y(tn)

0 0 3 3
1 0.5 6 8.15
2 1 12 22.2
3 1.5 24 60.3
4 2 48 163.8
5 2.5 96 445
6 3 192 1210

The approximate values drift away from actual values quickly and smaller step size FE has a smaller error.

Remark: When implementing FE in code leave f as a black box for generality
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Remark: y(tn) is the exact value at time tn while yn is the approximate/discrete data at step n
(at step n it is time tn)

f evaluted on numerical data: f(tn, yn)

f evaluted on exact value of y: f(tn, y(tn))

Second Example:

x′(t) = −y(t) y′(t) = x(t) x(t0) = 2 y(t0) = 0 t0 = 2

To solve numerically with h = 2 apply FE yn+1 = yn + hf(tn, yn) to the vector form of this IVP[
x(t)
y(t)

]′
=

[
−y(t)
x(t)

]
→

[
xn+1

yn+1

]
=

[
xn
yn

]
+ 2

[
−yn
xn

]
=

[
xn − 2yn
yn + 2xn

]
Solving until t = 8 we can generate the table:

n tn xn yn

0 2 2 0
1 4 2 4
2 6 -6 8
3 8 -22 -4

Plotting this numerical solution we notice that FE exhibits large error/drift (blue circle is correct)

Deriving Forward Euler

Recall how the Taylor series for f at some point a is defined as:

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2
(x− a)2 + · · ·

Unrelated : function f is equal to its Taylor series if it is analytic (most functions are)

There are two ways we can arrive at Forward Euler:

• Finite Differences View: approximate the deriviative y′ using a finite difference

y′(tn) = f(t, y(t)) → y′(tn) ≈
yn+1 − yn
tn+1 − tn
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Since we defined h = tn+1 − tn we have

y′(tn) ≈
yn+1 − yn

h
= f(tn, yn)

Rearranging this we get FE yn+1 = yn + hf(tn, yn)

• Taylor Series View: Taylor series for y at tn is (just assume y is analytic)

y(x) =

∞∑
n=0

y(n)(tn)

n!
(x− tn)

n

To get y(tn+1) we just sub x = tn+1 and since h = tn+1 − tn we get

y(tn+1) =

∞∑
n=0

y(n)(tn)

n!
(tn+1 − tn)

n =

∞∑
n=0

y(n)(tn)

n!
hn

assume that terms of order h2 or higher will be small as h → 0 and drop them to get FE

y(tn+1) ≈ y(tn) + hy′(tn) = y(tn) + hf(tn, yn)

Error of Forward Euler

• Local Truncation Error (LTE): the error incurred between step n and n+ 1:

|yn+1 − y(tn+1)| (assuming exact data at time tn)

• Absolute/Global Error: is the total error incurred to get to step n:

|yn − y(tn)|

For Forward Euler assume yn is exact then turning y(tn+1) into a Taylor series we get the LTE:

yn+1 − y(tn+1) = −h2

2
y′′(tn) +O(h3) = O(h2)

as h decreases, LTE decreases quadratically. (We will find global error later)

Note: Big O in this case is used to show the dominant term is the slowest decreasing one as h → 0
(typically the lowest power of h)

Example: as x → 0 for g(x) = 5x3 − 9x4 + 2x9 then

g(x) = O(x3) g(x) = 5x3 +O(x4) g(x) ̸= O(x9)

Higher Order Time Stepping Schemes

Derivative Approximation

Consider the Taylor expansion for y(tn+1) at tn then rearrange

y(tn+1) = y(tn) + hy′(tn) +O(h2) → y′(tn) =
y(tn+1)− y(tn)

h
+O(h)

Thus we state that the derivative approximation has error O(h)
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More Accurate Time-Stepping

If we add another term from the Taylor series we could O(h3) error:

y(tn+1) = y(tn) + hy′(tn)︸ ︷︷ ︸
FE: O(h2) error

+
h2

2
y′′(tn)

︸ ︷︷ ︸
O(h3) error

+
h3

3!
y′′′(tn) + · · ·

Notice that we don’t know what y′′ is so we will just approximate it using the finite difference method:

y′′(tn) =
y′(tn+1)− y′(tn)

h
+O(h) =

f(tn+1, y(tn+1))− f(tn, y(tn))

h
+O(h)

Trapezoidal Rule (Crank-Nicolson)

Subbing y′(t) = f(t, y(t)) and the finite difference for y′′ into the Taylor series we get

y(tn+1) = y(tn) +
h

2
[f(tn, y(tn)) + f(tn+1, y(tn+1))] +O(h3)

replacing the exact values with approximations we get

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)] +O(h3)

The intuition is the we are averging the slopes of y at tn and tn+1 to get the next step.

Explicit vs Implicit Schemes

Explicit: only yn or earlier data appears on RHS

• Simpler and fast to compute per step

• Less stable so usually want to use smaller timesteps to avoid compounding errors

• Forward Euler is an explicit scheme and can be evaluted directly

yn+1 = yn + hf(tn, yn)

Implicit: unknown yn+1 appears on both sides

• Often more complex and expensive to solve per step

• More stable so can safely use larger timesteps

• Trapezoidal is an implicit scheme so to solve for yn+1 we need to rearrange for each different f

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)]

Computation tradeoff between few expensive large steps (implicit) vs many cheap small steps (explicit).

Modified/Improved Euler

We use a Forward Euler-like step as the basis for the Trapezoidal-like step

y∗n+1 = yn + hf(tn, yn)

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, y

∗
n+1))

This allows us to turn the Trapezoidal method into an explicit scheme with the same LTE of O(h3)
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Improved Euler Example

x′(t) = −y(t) y′(t) = x(t) x(t0) = 2 y(t0) = 0 t0 = 0

Generate our improved Euler steps with h = 2:

• FE step: [
x∗n+1

y∗n+1

]
=

[
xn
yn

]
+ 2

[
−yn
xn

]
=

[
xn − 2yn
yn + 2xn

]
• Trapzoidal step [

xn+1

yn+1

]
=

[
xn
yn

]
+

2

2

[
−yn − y∗n+1

xn + x∗n+1

]
=

[
xn − yn − y∗n+1

yn + xn + x∗n+1

]
Now we apply improved Euler to the IVP

• Step 1 [
x∗1
y∗1

]
=

[
x0 − 2y0
y0 − 2x0

]
=

[
2
4

]
→

[
x1
y1

]
=

[
x0 − y0 − y∗1
y0 + x0 + x∗1

]
=

[
2− 0− 4
0 + 2 + 2

]
=

[
−2
4

]

• Step 2 [
x∗2
y∗2

]
=

[
x1 − 2y1
y1 − 2x1

]
=

[
−10
0

]
→

[
x2
y2

]
=

[
x1 − y1 − y∗2
y1 + x1 + x∗2

]
=

[
−2− 4 + 0
4− 2− 10

]
=

[
−6
−8

]

Now we have the table
n tn xn yn x∗n y∗n

0 0 2 0

1 2 −2 4 2 4

2 4 −6 −8 −10 0

Time Integration Methods So Far

exact values should make a circle

• Forward Euler (LTE O(h2)): Use slope at start point

• Trapezoidal (LTE O(h3)): Use average of slope at start and end of step

• Improved Euler (LTE O(h3)): Use average of slope at start and approximate end
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More Time Stepping Schemes

Backwords Euler Method

Similar to forward Euler, but implicit (same truncation error of O(h2))

• Forward Euler: uses the slope from the start of the step

yn+1 = yn + hf(tn, yn)

• Backwards Euler: uses the slope from the end of step

yn+1 = yn + hf(tn+1, yn+1)

Explicit Runge Kutta Schemes

Runge Kutta is a family of explicit schemes written in a specific form

• Improved Euler is rewritten as

yn+1 = yn +
k1
2

+
k2
2

k1 = hf(tn, yn) k2 = hf(tn + h, yn + k1)

• Midpiont Method: use the slope found at the approximate middle of the step (LTE O(h3))

yn+1 = yn + k2 k1 = hf(tn, yn) k2 = hf(tn + h
2 , yn + k1

2 )

There are many Runge Kutta schemes for higher error orders O(hα) for α = 3, 4, 5, 6, . . .

4th Order Runge Kutta (RK4)

The Classical Runge-Kutta or RK4 with an LTE of O(h5)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

k1 = h · f(tn, yn) k2 = h · f
(
tn + h

2 , yn + k1
2

)
k3 = h · f

(
tn + h

2 , yn + k2
2

)
k4 = h · f (tn + h, yn + k3)

Global Error

We previously only looked at the error for a single step but error will accumulate with each step (drift).
Global error is the total error accumulated at the final time tfinal

For constant steps h we multiply our LTE with the number of steps to get

#steps =
tfinal − t0

h
= O(h−1) → Global error ≤ Local Error ·O(h−1)

In other words global error is one degree lower than the LTE.

Examples:

• Forward Euler: O(h2) ·O(h−1) = O(h) or 1st order accurate

• Improved Euler: O(h3) ·O(h−1) = O(h2) or 2nd order accurate

• RK4: O(h5) ·O(h−1) = O(h4) or 4th order accurate
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Multistep Schemes

So far we have only seen single-step scemes which only use info from current time tn (and forward) to
solve for yn+1. Multi-step methods also use information from earlier timesteps tn−1, tn−2, etc..

Implicit Multistep: Backwards Differentiation Formula (BDF) Methods

Generalize backwards Euler into the family of methods BDF1, BDF2, BDF3, etc where the number
indicates order of global error.

• BDF1 is just backwards euler and is a single step scheme

yn+1 = yn + hf(tn+1, yn+1)

• BDF2 uses current and previous step data

yn+1 =
4

3
yn − 1

3
yn−1 +

2

3
hf(tn+1, yn+1)

• In general, BDF schemes are written as

1∑
k=−s+1

akyn+k = hf(tn+1, yn+1)

where ak are some coefficients

Deriving BDF coefficients via Interpolation requires 3 steps:

1. Fit p(t) using Lagrange polynomials to unknown point (tn+1, yn+1) and one or more earlier points

2. Find p′(t) by differentiating

3. Require end-of-step slope to match: p′(tn+1) = f(tn+1, yn+1) then rearrange for yn+1

Example: Deriving BDF2 via Interpolation:

1. Fit Lagrange polynomial to time steps: tn+1, tn, tn−1 and recall that h = tn+1 − tn

p(t) = yn+1
(t− tn)(t− tn−1)

(tn+1 − tn)(tn+1 − tn−1)
+ yn

(t− tn+1)(t− tn−1)

(tn − tn+1)(tn − tn−1)
+ yn−1

(t− tn+1)(t− tn)

(tn−1 − tn+1)(tn−1 − tn)

=
yn+1

2h2
(t− tn)(t− tn−1) +

yn
−h2

(t− tn+1)(t− tn−1) +
yn−1

2h2
(t− tn+1)(t− tn)

2. Determine p′(t)

p′(t) =
yn+1

2h2
(2t− tn − tn−1) +

yn
−h2

(2t− tn+1 − tn−1) +
yn−1

2h2
(2t− tn+1 − tn)

3. Require p′(tn+1) = f(tn+1, yn+1) then rearrange for yn+1

p′(tn+1) =
yn+1

2h2
(2tn+1 − tn − tn−1) +

yn
−h2

(2tn+1 − tn+1 − tn−1) +
yn−1

2h2
(2tn+1 − tn+1 − tn)

=
yn+1

2h2
(h+ 2h) +

yn
−h2

(2h) +
yn−1

2h2
(h)

=
3yn+1

2h
+

2yn
−h

+
yn−1

2h
= f(tn+1, yn+1)

yn+1 =
4

3
yn − 1

3
yn−1 +

2

3
hf(tn+1, yn+1)
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Explicit Multistep: Adams-Bashforth

2nd order Adams-Bashforth:

yn+1 = yn +
3

2
hf(tn, yn)−

1

2
hf(tn−1, yn−1)

We know all the data at tn and tn−1 so we can directly evaluate to get yn+1, has LTE of O(h3)

Higher Order ODEs

We can convert a higher ODE to a lower order using

y(n)(t) = f(t, y(t), y′(t), . . . , y(n−1)(t))

This allows us to convert higher order ODEs into a system of first order ODEs.

Method: for the term y(n) with the largest degree, if n > 1 then introduce new variables

yi = y(i−1) for i = 1, . . . , n

substituting these new variables into the original ODE leads to:

• one first order equation for each original equation

• one more more addition equations relating the new variables

Example 1:
y′′(t) = ty(t) with y(1) = 1 and y′(t) = 2

• Introduce variables yi = y(i−1) for i = 1, 2

y1(t) = y(t) y2(t) = y′(t)

• Plug into ODE to get us a system of 1st order ODEs

y′2(t) = ty1(t)

y′1(t) = y2(t)

with initial conditions y1(t) = 1 and y2(1) = 2

Example 2:
y(4)(t)− 3y′′′(t) + sin(t)y′′(t)− 7ty(t) = et

• Introduce variables yi = y(i−1) for i = 1, . . . , 4

y1(t) = y(t) y2(t) = y′(t) y3(t) = y′′(t) y4(t) = y′′′(t)

• Plug into ODE to get one first order equation:

y′4(t) = 3y4(t)− sin(t)y3(t) + 7ty1(t) + et

• Add relationships between the new variables to the system

y′3(t) = y4(t) y′2(t) = y3(t) y′1(t) = y2(t)

This gives us a system of 4 first order linear ODEs

26



Stability

Errors are generally O(hp) for some value of p so our schemes are less accurate for large values of h.

Stability is the measure of how much an error in the intial conditions will change the results:

y′(t) = f(t, y(t)) y(0) = y0 + ϵ0

If the intial error ϵ0 grows exponentially for many steps n → ∞ our scheme is unstable.

To examine the stability of time-stepping schemes we will use

y′(t) = −λy(t) y(0) = y0 where λ > 0

as our test equation becuase of its simplicity. Then we have 3 steps:

1. Apply the time stepping scheme to the test equation

2. Find the closed form of its numerical solution and error behaviour

3. Find the conditions on the timestep h that ensure stability (error approaches zero)

Explicit Scheme Stability: Forward Euler

yn+1 = yn + hf(tn, yn)

Applying FE to our test equation y′(t) = −λy(t) and y(0) = y0 with λ > 0

yn+1 = yn + h(−λyn) = yn(1− hλ)

• Closed form for numerical solution is yn = y0(1− hλ)n for n timesteps

• True solution is y(t) = y0e
−λt which decays to zero

Numerical solution goes to zero only when

|1− hλ| < 1 → −1 < 1− hλ < 1

• LHS says −1 < 1− hλ which becomes h < 2
λ

• RHS says 1− hλ < 1 which becomes −hλ < 0 or h > 0 (this always holds)

Hence the numerical solution decays to 0 (like the true solution) when h < 2
λ otherwise it will blow up.

If we perturb the initial conditions with error ϵ0 then:

y
(p)
0 = y0 + ϵ0 → y(p)n = (y0 + ϵ0)(1− hλ)n

Taking the difference to error ϵn = y
(p)
n − yn becomes ϵn = ϵ0(1 − hλ)n. We conclude the error has the

same behaviour for this test equation (decays to 0 for h < 2
λ)

We say Forward Euler is Conditionally Stable (stable only when h satisfies the stability condiiton)
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Implicit Scheme Stability: Backword Euler

yn+1 = yn + hf(tn+1, yn+1)

Applying BE to our test equation y′(t) = −λy(t) and y(0) = y0 with λ > 0

yn+1 = yn + h(−λyn+1) → yn+1 =
yn

(1 + hλ)
→ yn =

y0
(1 + hλ)n

(closed form)

Since h > 0 and λ > 0 the value decreases in magnitude as n → ∞ for any timestep h

By the same logic as for FE the error/perturbation follows the same form

ϵn =
ϵ0

(1 + hλ)n

So BE is Unconditionally Stable (stable for any h > 0)

• Generally implicit schemes are more stable than explicit schemes at the cost of being potentially
more expensive to solve

• Stabiliy does not imply accuracy, if we take a very large timestep we will still get large errors

Explicit Scheme Stability: Improved Euler

y∗n+1 = yn + hf(tn, yn)

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, y

∗
n+1))

Applying IE to our test equation y′(t) = −λy(t) and y(0) = y0 with λ > 0

y∗n+1 = yn + h(−λyn)

yn+1 = yn +
h

2
(−λyn − λy∗n+1)

= yn − hλyn +
h2λ2

2
yn

= yn

(
1− hλ+

h2λ2

2

)
Closed form and error:

yn = y0

(
1− hλ+

h2λ2

2

)n

→ ϵn = ϵ0

(
1− hλ+

h2λ2

2

)n

Then IE is stable when ∣∣∣∣1− hλ+
h2λ2

2

∣∣∣∣ < 1

after some algebra this yields h < 2
h for stability which is the same as FE.
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Test Equation Stability Visualized

Graphs of the numerical approximation of the test equation using Forward Euler and Backword Euler.

Forward Euler h > 2/λ (unstable)

Forward Euler h < 2/λ (stable but inaccurate)

Forward Euler h = 2/λ (borderline stable)

Forward Euler h ≪ 2/λ (stable and accruate)

Backward Euler h > 2/λ (stable)

• Stability: how the numerical algorithm will react to small errors

• Truncation Error: how the accuracy of our numerical solution scales with time step h
(in absence of stability issues)

Both factors need to be considered to get a useful solution.
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Stability in General (Beyond Test Equation)

There is a method for extrapolate the results of the test equation to other DEs however it is outside the
scope of this course.

• For non-linear problems we transform it into a linear equation locally and test stability there (may
need to do multiple times)

• for system of ODEs stability relates to the eigenvalues of the Jacobian matrix

Local Truncation Error

Previously we got truncation error as a byproduct of the derivation of the scheme (e.g. via Taylor series)

In order to find LTE for methods we don’t know the derivation for recall that:

LTE = y(tn+1)− yn+1

Assuming exact RHS data this is the error from taking one step. For time-stepping scheme yn+1 = RHS:

1. Replace approximations on RHS with exact versions

2. Taylor expand all RHS quantities about time tn

3. Taylor expand the exact soltuion y(tn+1) to compare against

4. Compute difference y(tn+1)− yn+1. Lowest degree non–canceling power of h gives the LTE.

Taylor Expansion:

• General Taylor series for y at time tn:

y(x) =
∞∑
n=0

y(n)(tn)

n!
(x− tn)

n

• Since h = tn+1 − tn if we use the above to estimate the value of y at tn+1 or at tn−1

y(tn+1) =

∞∑
n=0

y(n)(tn)

n!
hn y(tn−1) =

∞∑
n=0

y(n)(tn)

n!
(−h)n

• Remark using Taylor series created at tn to estimate tn will just get y(tn) = y(tn)

Local Truncation Error of Trapezoidol

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1))

1. Replace RHS quantities with exact counterparts

yn+1 = y(tn) +
h

2

[
y′(tn) + y′(tn+1)

]
2. Taylor expand the RHS quantities about time tn (using h = tn+1 − tn)

y′(tn+1) = y′(tn) + hy′′(tn) +
h2

2
y′′′(tn) +O(h3)
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Then

yn+1 = y(tn) +
h

2

[
y′(tn) + y′(tn) + hy′′(tn) +

h2

2
y′′′(tn) +O(h3)

]
= y(tn) + hy′(tn) +

h2

2
y′′(tn) +

h3

4
y′′′(tn) +O(h4)

3. Write down the exact Taylor series for y(tn+1)

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

h3

6
y′′′(tn) +O(h4)

4. Find the difference:

y(tn+1)− yn+1 =
h3

6
y′′′(tn)−

h3

4
y′′′(tn) +O(h4)

= − 1

12
h3y′′′(tn) +O(h4)

= O(h3)

Thus the local truncation error of Trapezoidol is O(h3)

Local Truncation Error of BDF2

yn+1 =
4

3
yn − 1

3
yn−1 +

2h

3
f(tn+1, yn+1)

• Replace RHS data with exact versions

yn+1 =
4

3
y(tn)−

1

3
y(tn−1) +

2h

3
y′(tn+1)

• Taylor expand RHS expressions (using −h = tn−1 − tn)

y(tn−1) = y(tn)− hy′(tn) +
h2

2
y′′(tn)−

h3

6
y′′′(tn) +O(h4)

y′(tn+1) = y′(tn) + hy′′(tn) +
h2

2
y′′′(tn) +O(h3)

Then

yn+1 =
4

3
y(tn)−

1

3

(
y(tn)− hy′(tn) +

h2

2
y′′(tn)−

h3

6
y′′′(tn) +O(h4)

)
+

2h

3

(
y′(tn) + hy′′(tn) +

h2

2
y′′′(tn) +O(h3)

)
= y(tn) + hy′(tn) +

h2

2
y′′(tn) +

7h3

18
y′′′(tn) +O(h4)

• Find difference between above and the true Taylor series:

y(tn+1)− yn+1 =

[
1

6
− 7

18

]
y′′′(tn) +O(h3)

= −2

9
h3y′′′(tn) +O(h4)

= O(h3)
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Adaptive Time-Stepping

So far we had a constant h given to us. If given the choice a smaller h yields smaller error but:

• It will have a higher computational cost

• Too small of a time step will cause no extra benefit because of floating point errors

To minimize cost we want to the choose largest h with error still within a desired tolerance

error < tolerance

To do this with a fixed h is difficult because the rate of change of different parts can vary extremely:

Instead we can adapt the time step to minimize our effort while still getting the tolerance we want.

Basic Algorithm

The goal is to control h to always satisfy:

error < tolerance

however knowing the exact error is the same as knowing the solution.

Instead we use two different time-stepping schemes together then compare their results to estimate error
and adjust h accordingly:

1. Compute the approximate solutions for one time step with 2 schemes of different orders

yAn+1 = Method A with O(hp)

yBn+1 = Method B with O(hp+1)

2. Approximate the error by taking their difference

err = |yAn+1 − yBn+1|

3. While error > tolerance: set h := h/2 then go back to step 1

4. Estimate error coefficient c and predict a good next step size hnew

c ≈
|yAn+1 − yBn+1|

(hpold)

where hold is the most recent timestep size. Then we use c to estimate the next time step error:

errnext = |yAn+2 − y(tn+2)| ≈ c(hpnew) =
|yAn+1 − yBn+1|

(hpold)
(hpnew) = |yAn+1 − yBn+1|

(
hnew
hold

)p
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Then set errnext to our tolerance tol and solve for hnew

hnew = hold

(
tol

|yAn+1 − yBn+1|

)1/p

To be safe scale tol by some factor ℓ (Ex: ℓ = 1/2 or ℓ = 3/4)

5. Repeat from step 1 until end time is reached

Step 3 will shrink our step size while step 4 is allows our step size to grow larger when it is safe.

Justification: observe that for some value of p and c (notice that c is the error coefficient)

yAn+1 = y(tn+1) + chp +O(hp+1) yBn+1 = y(tn+1) +O(hp+1)

• Method A’s true error is:
|yAn+1 − y(tn+1)| = chp +O(hp+1)

• Method A’s estimated error is:

|yAn+1 − yBn+1| = chp +O(hp+1)

Since the dominant component of the error matches we can say our estimate is a decent approximation.

Usage of Adaptive Time-Stepping

Matlab’s ODE45 and SciPy’s RK45 uses the Dormand-Prince scheme which uses the 4th and 5th order
Runge-Kutta schemes:

This is more efficient because we use k1 to k5 for both both RK4 and RK5.

Stiff Problems

Stiff problems cause some issues:

• Interesting aspect of the solution changes slowly so we want large time steps

• Stability condition of the (usually explicit) stepping method forces us to use small time steps

This arises when some aspects of the problem evolve at different time scales:
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We only care about the trend in red but our stability condition forces us to use small steps.

1. Apply ODE45 (with adaptive time steps) to a stiff problem

2. Estimated truncation error is small so ODE45 tries to take larger step

3. Stability condition is violated which creates large errors

4. ODE45 cuts timestep back to reduce this error

Stuck taking very small steps. Example: Mathworks Stiff Differential Equations

• ODE45 handles this poorly as it bounces around 1 in the zoom-in view.

• ODE23s is the stiff solver and is able to deal with it well

In general implicit schemes are good since they have weaker or no stability restrictions

Matlab has a a few stiff solvers:

• ODE23s uses 2nd and 3rd order implicit schemes

• ODE15s uses 1st and 5th order implicit schemes
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The Fourier Transform

The Fourier Transform is applied to continuous functions or discrete data to gain useful insights:

1. Transform some function/data into a form that reveals the frequencies of information

2. Process or analyze in this frequency domain form where some tasks are easier

3. Transform back

This process can be applied to a variety signal processing applications (filtering, denoising, autotune,
compression, etc):

The goal of Fourier analysis is to convert time/space-dependent data into Frequency domain (infinite
sum of increasingly high frequency sin or cos)

Time domain : f(t) Space domain : f(x)

f(t) = a0 + a1 cos(qt) + b1 sin(qt) + a2 cos(2qt) + b2 sin(2qt) + · · · where q =
2π

T

now the coefficients ai and bi determine the function. When finding these coefficients we have two views:

• A weird non-polynomial interpolation problem (fitting to given function/data)

• A series expansion of a function as a specific kind of infinite sum (e.g. Taylor series)

Continuous Fourier Series

The goal is to represent any f(t) as an infinite sum of trig functions:

f(t) = a0 +
∞∑
k=1

ak cos

(
2πkt

T

)
+

∞∑
k=1

bk sin

(
2πkt

T

)

ak and bk indicate information/amplitude for each sinusoid of period T
k or frequency k

T .

If we assume that the range of t is t ∈ [0, 2π] then the domain length is T = 2π and we get:

f(t) = a0 +

∞∑
k=1

ak cos(kt) +

∞∑
k=1

bk sin(kt)
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This can be thought of as convertion to a list of numbers ak and bk.

Visualization: https://bl.ocks.org/jinroh/7524988
Converting a sawtooth wave into a truncated (finite) Fourier series lets us understand why ringing artifacts
occur during image compression:

Ringing artifact during image compression

Because of discontinuity at edges the Fourier series overshoots at the top and undershoots at the bottom.

Orthogonality Relations ∫ 2π

0
cos(kt) sin(jt)dt = 0 ∀k, j∫ 2π

0
cos(kt) cos(jt)dt = 0

∫ 2π

0
sin(kt) sin(jt)dt = 0 k ̸= j∫ 2π

0
sin(kt)dt = 0

∫ 2π

0
cos(kt)dt = 0

Determing Coefficients of Fourier Series

f(t) = a0 +

∞∑
k=1

ak cos(kt) +

∞∑
k=1

bk sin(kt)

• To find a0 (average value fo f over [0, 2π]) we integrate over [0, 2]

∫ 2π

0
f(t)dt = a0

∫ 2π

0
dt+

∞∑
k=1

ak
��

���
���*0∫ 2π

0
cos(kt)dt+

∞∑
k=1

bk
��

���
��*0∫ 2π

0
sin(kt)dt

a0 =

∫ 2π
0 f(t)dt∫ 2π

0 dt
=

1

2π

∫ 2π

0
f(t)dt

• To determine coefficients aℓ for integer ℓ > 0 we multiply by cos(ℓt) and integate over [0, 2π]

∫ 2π

0
f(t) cos(ℓt)dt = a0

���
����*0∫ 2π

0
cos(ℓt)dt+

∞∑
k=1

ak

∫ 2π

0
cos(kt) cos(ℓt)dt+

∞∑
k=1

bk
�����������:0∫ 2π

0
sin(kt) cos(ℓt)dt

Since
∫ 2π
0 cos(kt) cos(ℓt)dt = 0 if k ̸= ℓ this only leaves the case k = ℓ∫ 2π

0
f(t) cos(ℓt)dt = aℓ

∫ 2π

0
cos2(ℓt)dt = aℓπ

aℓ =
1

π

∫ 2π

0
f(t) cos(ℓt)dt
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• Applying a similar process for bk using sin instead of cos

bℓ =
1

π

∫ 2π

0
f(t) sin(ℓt)dt

Fourier Series Coefficients Summary:

f(t) = a0 +
∞∑
k=1

ak cos(kt) +
∞∑
k=1

bk sin(kt)

a0 =
1

2π

∫ 2π

0
f(t)dt ak =

1

π

∫ 2π

0
f(t) cos(kt)dt bk =

1

π

∫ 2π

0
f(t) sin(kt)dt

Complex Number Review

for z ∈ C we can write z = a+ bi where i =
√
−1 and a, b ∈ R

• Conjugate: z = a+ bi = a− bi

• Modulus/norm/abs: |z| =
√
a2 + b2

• Argument/phase/angle: Arg(z) = arctan(b/a)

Euler’s Forumla: eiθ = cos(θ) + i sin(θ)

e−iθ = cos(−θ) + i sin(−θ) ↔ e−iθ = cos(θ)− i sin(θ)

This leads to two key identities:

cos(θ) =
eiθ + e−iθ

2
sin(θ) =

eiθ − e−iθ

2i

Fourier Series with Complex Exponentials

f(t) = a0 +
∞∑
k=1

ak cos(kt) +
∞∑
k=1

bk sin(kt) → f(t) =
+∞∑

k=−∞
cke

ikt

For k > 0 we can convert using

a0 = c0 ck =
ak
2

− ibk
2

c−k =
ak
2

+
ibk
2

To find ck directly we use the property∫ 2π

0
eikte−iℓtdt =

{
0 k ̸= ℓ

2π k = ℓ

Then we have coefficient formula:

ck =
1

2π

∫ 2π

0
e−iktf(t)dt
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Discrete Fourier Transform

Consider a vector of discrete data: f0, . . . , fN−1 for N uniformaly spaced data points (N assumed even)

Our goal is to convert these equal spaced samples of a unknown function into frequency domain, perform
some computation, then convert back to time/space-domain and some desired modification to input data:

The Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) are:

fn =
N−1∑
k=0

FkW
nk Fk =

1

N

N−1∑
n=0

fnW
−nk

W = e
2πi
N eiθ = cos θ + i sin θ

Roots of Unity

W = e
2πi
N → W k = e

2πik
N

This is the Nth roots of unity for k ∈ Z

Example: for N = 5 roots of unity we have W k
5 = e

2πik
5 which can be visualized as k = 1 going a fifth

around a unit circle, k = 2 going 2 fifths around, and so on:

This means that for n ∈ Z
|W k| = 1 W 5n

5 = 1 W k+5n
5 = W k

5

Orthogonality Identity:
N−1∑
j=0

W jkW−jℓ =
N−1∑
j=0

W j(k−ℓ) = Nδk,ℓ

With Kronecker delta function: δk,ℓ =

{
1 k = ℓ

0 k ̸= ℓ

Assume k, ℓ are integers in [0, N − 1]

• For k = ℓ
N−1∑
j=0

W j(0) =

N−1∑
j=0

1 = N
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• For k ̸= ℓ we begin with the finite geometric series

xN − 1 = (x− 1) (xN−1 + · · ·+ x+ 1)︸ ︷︷ ︸∑N−1
j=0 xj

→
N−1∑
j=0

xj =
xN − 1

x− 1

Applying to our expression
N−1∑
j=0

(W (k−ℓ))j =
(W k−ℓ)N − 1

W k−ℓ − 1
= 0

Since k − ℓ must be non-zero some integer then (W k−ℓ)N = 1 and numerator becomes 0

Remark: this is a discrete version of a simular continuous identity we saw earlier∫ 2π

0
eikte−iℓtdt =

{
0 k ̸= ℓ

2π k = ℓ

Inverse Discrete Fourier Transform (IDFT)

Consider N equality spaced data points (tn, fn) over the domain [0, T ] for n = 0, . . . , N − 1 then

tn =
nT

N

We then truncate the Fourier series so it only contains N terms

f(t) =

+∞∑
k=−∞

cke
ikt → f(t) ≈

N
2∑

k=−N
2
+1

cke
(2πi)kt

T

Using f(tn) = fn for any nth discrete data point tn = nT
N

fn =

N
2∑

−N
2
+1

cke
(2πi)ktn

T =

N
2∑

−N
2
+1

cke
(2πi)kn

N =

N
2∑

k=0

cke
i2πnk

N +
−1∑

k=−N
2
+1

cke
i2πnk

N

• Define cj outside range [−N
2 + 1, N2 ] to be periodic, that is cj±N = cj

• Then apply change of variables k = j −N on the 2nd term

• Notice that e−i2πn = cos(2πn)− i sin(2πn) = 1 for any n

−1∑
k=−N

2
+1

cke
i2πnk

N →
N−1∑

j=N
2
+1

cj−Ne
i2πnj

N e−i2πn →
N−1∑

j=N
2
+1

cje
i2πnj

N

Then plugging back into fn we can recombine the sumations:

fn =

N
2∑

k=0

cke
i2πnk

N +

N−1∑
k=N

2
+1

cke
i2πnk

N → fn =

N−1∑
k=0

cke
i2πnk

N

Then we rename ck into the N discrete Fourier coefficients Fk corresponding to our N input points fn

fn =

N−1∑
k=0

FkW
nk where W = e

i2π
N
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Discrete Fourier Transform (DFT)

Like the continuous case we use orthogonality to isolate the Fourier coefficients Fk, so begin with the IDFT

fn =
N−1∑
k=0

FkW
nk for W = e

2πi
N

To get the k coefficient multiply both sides by W−nk and sum from 0 to N − 1

N−1∑
n=0

fnW
−nk =

N−1∑
n=0

N−1∑
j=0

FjW
njW−nk

=
N−1∑
j=0

Fj

N−1∑
n=0

Wn(j−k)

=
N−1∑
j=0

FjNδj,k (Roots of unity orthogonality)

= Fk ·N

Thus by reorganizing we get our Discrete Fourier Transform

Fk =
1

N

N−1∑
n=0

fnW
−nk

Given data fn (for n = 0, . . . , N − 1) we can find corresponding Fk (for k = 0, . . . , N − 1)

Properties of the DFT:

• Sequence {Fk} is doubly infinite and periodic (if we allow k < 0 or k > N − 1 then Fk repeat)

• Conjugate Symmetry : if data fn is real then Fk = FN−k (symmetric about k = N
2 )

FN−k =
1

N

N−1∑
n=0

fnW−n(N−k) =
1

N

N−1∑
n=0

fnW−nN+nk =
1

N

N−1∑
n=0

fnWnk =
1

N

N−1∑
n=0

fnW
−nk = Fk

• Coefficient F0 =
1
N

∑N−1
n=0 fn is the average of data values

• Frequencies of corresponding waves increase on k = 0 to N
2 then decrease on k = N

2 + 1 to N − 1

Discrete Fourier Transform Examples

N = 12 samples, F0 = 0 average, F1 = F11 = 0.5 (since Fk = F12−k) adds a wave that repeats once:
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To understand why this makes sense recall Euler’s identities and fn before rearranging:

cos(θ) =
eiθ + e−iθ

2
fn =

N
2∑

k=−N
2
+1

cke
(2πi)kn

N

When c1 = c−1 = 0.5 (these are corresponding ck to Fk) with all others being 0

fn = 0.5e
2πin
N + 0.5e

−2πin
N = cos

(
2πn

N

)
Example: discrete data from a smooth bump vs rough bump

Notice that enough the rough bump has more irregularity the frequencies F1 and F8 still dominate

Remark: When Fourier coefficients are complex we plot their modulus (magnitude)

Remark: The F0 coefficient is usually shown separately because its size can make the graph hard to read

Remark: Different definitions of DFT/IDFT can be found in literature/code

• We use the following:

fn =

N−1∑
k=0

FkW
nk Fk =

1

N

N−1∑
n=0

fnW
−nk

• SciPy (and some other sources) use:

fn =
1

N

N−1∑
k=0

FkW
nk Fk =

N−1∑
n=0

fnW
−nk

So be careful when coding in Jupyter that your Fourier coefficients Fk might look much larger.
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Matrix Form of DFT and IDFT

DFT : F = Mf IDFT : f = M−1F = NMTF

Where the kth column of M is

1

N



W 0

W−k

W−2k

W−3k

...
W−(N−1)k



Example: Using N = 4 then we have W 0 = 1, W 1 = i, W 2 = −1, W 3 = −i

F =


−2
2 + i
−2
2− i

 M =
1

4


W 0 W 0 W 0 W 0

W 0 W−1 W−2 W−3

W 0 W−2 W−4 W−6

W 0 W−3 W−6 W−9

 =
1

4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


Then after finding the conjugate of M then we can apply the IDFT to F

f = NMTF = 4 · 1
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




−2
2 + i
−2
2− i

 =


0
−2
−8
2


Notice if we directly apply this then DFT and IDFT will both take O(n2) complex floating-point operations.

Fast Fourier Transform

We can make DFT and IDFT faster by deploying a divide and conquer strategy where we split the list in
half until we reach the base case of individual numbers.

Remark: This requires N = 2m for some m, so we sometimes need to pad our initial data with zeros

Dividing Up the Input

We begin by spliting the DFT of sequence fn and assume that N is even:

Fk =
1

N

N−1∑
n=0

fnW
−nk =

1

N

N
2
−1∑

n=0

fnW
−nk +

1

N

N−1∑
n=N

2

fnW
−nk

Reindex 2nd term using n = m+ N
2 then rename m back to n

1

N

N−1∑
n=N

2

fnW
−nk → 1

N

N
2
−1∑

m=0

fm+N
2
W−k(m+N

2
) → 1

N

N
2
−1∑

n=0

fn+N
2
W−nkW−kN

2

Notice W
−kN

2 = (e
2πi
N )

−kN
2 = e−πik = (−1)k. Subbing everything back into the sumation and combining:

Fk =
1

N

N
2
−1∑

n=0

fnW
−nk +

1

N

N
2
−1∑

n=0

fn+N
2
W−nk(−1)k =

1

N

N
2
−1∑

n=0

(
fn + fn+N

2
(−1)k

)
W−nk
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Thus using j = 0 to N
2 − 1 we can create two lists: even entries (k = 2j) and odd entries (k = 2j + 1)

Even: F2j =
1

N

N
2
−1∑

n=0

(
fn + fn+N

2

)
W−2nj

Odd: F2j+1 =
1

N

N
2
−1∑

n=0

[(
fn − fn+N

2

)
W−n

]
W−2nj

We call the extra W−n in the odd case the Twiddle Factor.

As a direct result fn can be split into two half-length vectors

gn =
1

2

(
fn + fn+N

2

)
hn =

1

2

(
fn − fn+N

2

)
W−n

Notice that n = 0 to N
2 − 1 and we update N := N

2 which combined with W−2nj
N = W−nj

N
2

ensures that

F2j = DFT(g) F2j+1 = DFT(h)

This spliting is referred to as a Butterfly Operation:

It mildly resembles a butterfly

Fast Fourier Transform (FFT)

To perform a Fast Fourier Transform the butteryfly operation is applied recursively until each list contains
only one value (Notice that taking the DFT of a list with one element does not change the list).

Since each step performs even-odd index spltting the order of Fourier coefficients needs to be unscrambled.
We observe that the binary indices of the output indices have bits in reverse order from the input.
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Thus to unscramble the FFT output we convert the indices to binary and bit-reverse them to get index.

Inverse Fast Fourier Transform (IFFT)

The DFT and IDFT has very similar forms so we can use the same core butterfly algorithm to perform
either direction if we make some minor changes.

The generic expression for IDFT and DFT is:

f ′
k =

1

N

N−1∑
n=0

fnU
nk

• DFT: U = W−1

• IDFT: U = W and we post-multiply by N

As a result for IFFT we change the twiddle factor to Wn and multiply the final result by N

Naive vs FFT Performance

Naive algorithm: O(N2) complex FP operations

FFT algorithm: O(N log2N) operations

• O(N) operations to split the arrays in two at each stage

• There are m = log2N stages, since data is (or was padded to) length N = 2m

FFT Example

Stage 1: split the list of N = 8 entries

f =



4
3
2
1
4
3
2
1


→

1
2


4 + 4
3 + 3
2 + 2
1 + 1

 =


4
3
2
1


1
2


(4− 4)W−0

(3− 3)W−1

(2− 2)W−2

(1− 1)W−3

 =


0
0
0
0
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Stage 2: split the lists of N = 4 entries (notice that W−1 = −i)
4
3
2
1



0
0
0
0


→

1
2

[
4 + 2
3 + 1

]
=

[
3
2

]
1
2

[
(4− 2)W−0

(3− 1)W−1

]
=

[
1
−i

]
[
0
0

]
[
0
0

]

Stage 3: split the lists of N = 2 entries[
3
2

]
[
1
−i

]
[
0
0

]
[
0
0

]
→

1
2

[
3 + 2

]
=
[
2.5
]

1
2

[
(3− 2)W−0

]
=
[
0.5
]

1
2

[
(1− i)

]
=
[
0.5− 0.5i

]
1
2

[
(1 + i)W−0

]
=
[
0.5 + 0.5i

][
0
][

0
][

0
][

0
]

→



2.5
0.5

0.5− 0.5i
0.5 + 0.5i

0
0
0
0


Bit-reverse Stage:

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111



2.5
0.5

0.5− 0.5i
0.5 + 0.5i

0
0
0
0


→

0 000
4 100
2 010
6 110
1 001
5 101
3 011
7 111



2.5
0

0.5− 0.5i
0
0.5
0

0.5 + 0.5i
0


Notice that since the input data was all real this satisfies conjugate symmetry

Fk = FN−k

This does not apply to F0 since FN is outside the array of length N (max index is N − 1)

Applications of the Fourier Transform

Image Compression

The 2D DFT is essentially one vertical 1D DFT and one horizontal 1D DFT combined:

Fk,l =
1

NM

N−1∑
n=0

M−1∑
j=0

fn,jW
−nk
N W−jl

M

Result is a 2D array of Fourier coefficients Fk,l. It uses two roots of unity (one per dimension):

WN = e
i2π
N Wm = e

i2π
M
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The 2D FFT can be computed efficiently by using two nested 1D FFTs:

• Transform each row (separately) using 1D FFTs

• Transform each column of the result using 1D FFTs

Numpy provides fft2 and ifft2 (watch out for 1/NM scaling convention differences)

Complexity of 2D FFT is O(MN(log2M + log2N)) compared to the naive algorithm’s O(MN(M +N))

Compression Strategy:

• Take the 2D FFT of image intensities

• Create an approximate version by throwing away small Fourier coefficients |Fk,l| < tol

• Store the remaining and perform IFFT when you want to view the image again

Note that the output image may contain imaginary values which we can safely ignore.

Remark: "compressed by 85%" means we are throwing away 85% of the fourier coefficients

Block-based Image Compression: often we subdidivide an image into smaller blocks (16×16 or 8×8)
then compress each block independently:

Pixels within each block often have similar/related data so there are less active coefficients.
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Understanding Aliasing

When capturing audio/video/images (or any kind of signal) we are often taking discrete point samples of
some continuous signal.

• Sampling rate: Fs = N/T = number of discrete samples per second

• Fourier frequency: k
T = kFs

N = number of cycles per second (1/s = Hz)

The index k of a Fourier coefficient determines the frequeny (cycles per unit time) it corresponds to.

Is this discrete data sampled from a low frequency or a high frequency continuous function?

The true answer is unknowable due to aliasing :

The high frequency signal (red) can aliases as (appear to be) a lower frequency signal (blue).

Some exmaples of aliasing in action:

• Photography: Moire patterns occur from our spaced point samples of some scene:
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• Computer Graphics: a checkboard pattern gives aliasing patterns when sampled into a few pixels:

In the right image we prevent aliasing by filtering/blurring out higher frequencies (anti-aliasing)

• Stroboscopic Effect: temporal aliasing of video frames

– Wagon wheel effect

– Helicopter rotor and camera shutter

– Strobe light makes water drops fall in slow motion

– Zoetrope animation toy

– 3D Zoetrope animation

– Water and vibrations

Aliasing: The Math

Consider the Fourier series of a continuous signal for a period T

f(t) =
∞∑

k=−∞
cke

i2πkt
T

When we sample this signal at points tn = n∆t = n T
N

fn = f(tn) =

∞∑
k=∞

cke
i2πkn

N =

∞∑
k=−∞

ckW
nk

k ∈ (−∞,∞) allows arbitrarily high frequencies, comparing this to our IDFT approximation:

fn =

N
2∑

n=−N
2
+1

FkW
nk → k ∈

[
−N

2 + 1, N
2

]
This only uses N coefficients Fk so frequencies higher than this are thrown away.
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To relate Fk and ck we plug the equation containing ck into our DFT equation

Fℓ =
1

N

N
2∑

n=−N
2
+1

fnW
−nℓ =

1

N

N
2∑

n=−N
2
+1

( ∞∑
k=−∞

ckW
nk

)
W−nℓ =

∞∑
k=−∞

ck
N

N
2∑

n=−N
2
+1

Wn(k−ℓ)

Notice Wn(k−ℓ) hints at using orthogonality but we will need to adapt it a bit to handle k ∈ (−∞,∞)

N
2∑

p=−N
2
+1

W p(k−ℓ) = N(δk,ℓ + δk,ℓ+N + δk,ℓ−N + δk,ℓ+2N + δk,ℓ−2N + · · · )

When ℓ = k + jN (i.e. ℓ ≡ k mod N) then W p(ℓ−k) = W pjN = 1 since W is an Nth root of unity.

Then using this orthogonality identity we have DFT coefficients

Fℓ =
∞∑

k=−∞

ck
N

N(δk,ℓ + δk,ℓ+N + δk,ℓ−N + · · · )

= cℓ + cℓ+N + cℓ−N + cℓ+2N + cℓ−2N + · · ·

We find that Fℓ is cℓ along with a bunch of higher frequncy signals (cℓ+N + cℓ−N + cℓ+2N + cℓ−2N + · · · )
summed into a single term.

The high frequencies from ck ̸∈ [−N
2 +1, N2 ] contribute to (alias as) low frequency Fk for k ∈ [−N

2 +1, N2 ].

Nyquist frequency:

If the original continuous signal has frequencies ck ̸= 0 for

|k| ≥ N

2

those frequences alias (i.e. get added) to a lower frequency.

• Once a signal is discretely sampled, there is no way to distinguish aliased (high) frequencies from
real (low) frequencies

• We have to sample at twice the rate of the highest occuring frequency of the original signal to avoid
aliasing

Treating Aliasing:

We have two partial solutions for aliasing

• Increase sampling resolution to capture higher frequencies

• Filter before sampling to remove frequencies that are too high so they don’t cause alising

Digital cameras have optical lowpass filter that physically blur the light to filter out the frequencies the
camera cannot handle, before it hits the image sensor.
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Correlation

Finding similarities/relationships between different signals/data, with applications to pattern matching,
synchronizing communications, signal detection, statistics, etc.

Consider two real periodic data sets yi and zi for i ∈ [0, N − 1], the correlation function ϕn defined as

ϕn =
1

N

N−1∑
i=0

yi+nzi

where n is the offset. We want to find n that maximizes ϕn (i.e. maximum correlation between the data).

Essentially: shift one vector by n, take the dot product, and divide by N (note that data is periodic)

In a more detailed example:

• Naive algorithm uses two nested for loops of length N so O(N2)

• However using the FFT we can do the same thing in O(N log2N)

In time-domain the correlation is

ϕn =
1

N

N−1∑
i=0

yi+nzi
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in frequency-domain there is no for loop required

Φn = YkZk

Consider Z = FFT (z) and Y = FFT (y) we have 4 equations:

ϕn =
1

N

N−1∑
ℓ=0

yℓ+nzℓ (1)

yℓ+n =
N−1∑
m=0

YmWm(ℓ+n) (2)

zℓ =
N−1∑
r=0

ZrW
rℓ (3)

Φk =
1

N

N−1∑
n=1

ϕnW
−nk (4)

Then writing Φk in terms of Y and Z by subbing (1) in (4) then subbing (2) and (3) into that

Φk =
1

N

N−1∑
n=1

(
1

N

N−1∑
ℓ=0

yℓ+nzℓ

)
W−nk

=
1

N2

∑
n

∑
ℓ

[(
N−1∑
m=0

YmWm(ℓ+n)

)(
N−1∑
r=0

ZrW
rℓ

)
W−nk

]

=
1

N2

∑
n

∑
ℓ

∑
r

∑
m

YmZrW
mℓWmnW rℓW−nk

=
1

N2

∑
n

∑
r

∑
m

[
YmZrW

−n(k−m)
∑
ℓ

W ℓ(r+m)

]

=
1

N2

∑
n

∑
r

∑
m

YmZrW
−n(k−m)Nδr,N−m

=
1

N

∑
n

∑
m

YmZN−mW−n(k−m)

=
1

N

∑
m

YmZN−m

∑
n

W−n(k−m)

=
1

N

∑
m

YmZN−mNδk,m

= YkZN−k

Then assuming real input Zk = ZN−k and ZN−k = Zk

Φk = YkZk

51



Overall algorithm for correlation via FFT:

• Apply FFT (O(N log2N)): Y = FFT(y) and Z = FFT(z)

• Compute the products (O(N)): Φk = YkZk for k = 0, . . . , N − 1

• Apply IFFT (O(N log2N)): ϕ = IFFT(Φ)

Complexity of O(N log2N) compared to naive two for loop O(N2)

In practice input signals/data are often not actually periodic:

• In this case, wrap-around effect is undesired since actual signals do not wrap

• To avoid wrap-around pollution we pad both arrays with zeros up to twice their original length

Numerical Linear Algebra

Page Rank

Page Rank is said to be the algorithm that launched Google.

• Previous ranking strategies ranked pages by times some keyword appeared, this often gave poor
results and was easy to cheat.

• Yahoo used an alternative strategy of creating a human-curated directory structure but this method
was slow and hard to update.

Google’s key idea: if many web pages link to your website then it must be important.

Academic paper success is measured using a similar method:

• When writing a research paper will usually cite earlier work

• If a paper gets cited many times then that paper was influential (which probably implies it is good)

We represent the web as a directed graph

• Nodes: represent websites

• Arcs: represent links from one page to another

• Degree: number of arcs leaving that node

To store this we use an adjacency matrix

Gij =

{
1 if link j → i exists
0 otherwise

Note that matrix G is not necessarily symmetric (if it were symmetric then the graph would be undirected)
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We can interpret a link from page j to page i as a vote and set outgoing links to have equal influence

1

deg(j)

Example: if j has a degree of 3 and points to i then i gets 1/3 votes (local importance)

For the global importance of page i we also need to consider how important page j is to determine how
much its 1/3 vote matters.

Random Surfer Model

Imagine a user that starts at some page and follows links at random from page to page for K steps, then
restarts on some other random page repeating this R times.

They will probably end up on important pages more often, so we can estimate the overall importance as:

Rank (page i) =
Visits to page i

Total visits to all pages

1 // Random Surfer Algorithm
2 Rank(m) = 0, m = 1,...,R
3 For m = 1,...,R
4 j = m
5 For k = 1,...,K
6 Rank(j) = Rank(j) + 1
7 Randomly select outlink l of page j
8 j = l
9 EndFor

10 EndFor
11 Rank(m) = Rank(m)/(K*R), m = 1,...,R

Issues with this algorihm that we will attempt to solve

• Number of real web pages is massive (over a billion) and R must be much larger

• Number of steps K must be large to get representative sample

• Dead end links leads to getting stuck on some page

• Cycles leads to getting stuck on closed subset of pages
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Markov Chain Matrix

We can think of the votes as a probability that a random surfer would take some link

Pij =

{
1

deg(j) if link j → i exists

0 otherwise

To build matrix P we use adjacency matrix G and divide entries of each column by the column sum.

Dead Ends: when we reach a dead end simply teleport to a new page at random:

P ′ = P +
1

R
edT

where e = [1, . . . , 1]T and dT indicates dead end columns with 1.

Cycles: to remove cycles we add a small probability 1− α to teleport from any page to any other page

M = αP ′ + (1− α)
1

R
eeT

eeT is a matrix of all ones.

We call this combined matrix M our Google matrix (Google purportedly used α ≈ 0.85 originally)

Each M expresses one step of random surfing:

M = α(P +
1

R
edT ) + (1− α)

1

R
eeT

Example of a Google matrix:

M = α





0 0 1/4 0 0 1/4
0 0 1/4 0 0 0
0 0 0 0 0 1/4
0 1/2 1/4 0 1/2 1/4
0 1/2 0 0 0 1/4
0 0 1/4 0 1/2 0

+



1/6 0 0 1/6 0 0
1/6 0 0 1/6 0 0
1/6 0 0 1/6 0 0
1/6 0 0 1/6 0 0
1/6 0 0 1/6 0 0
1/6 0 0 1/6 0 0



+
(1− α)

6



1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1


Google matrix M is an example of a Markov matrix.

• In general, a Markov matrix Q has two properties:

0 ≤ Qij ≤ 1 and
∑
i

Qij = 1

• A Probability Vector is a vector q such that

0 ≤ qi ≤ 1 and
∑
i

qi = 1

If the surfer starts at a random page with equal probabilities then we have a probability vector pi =
1
R .

To evolve the probability vector we need:
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• Probability vector describing the initial state p0

• Markov matrix M describing the transition probabilities among pages

Then the probabilities for our surfer to be at each page after one transition is

p1 = Mp0

Then for any step n, the next step probabilities are pn+1 = Mpn

To prove that pn+1 is a probability vector we have:

• pn+1
i ≥ 0 since it is just sums and products of probabilities ≥ 0

•
∑

i p
n+1
i = 1 since

∑
i

pn+1
i =

∑
i

∑
j

Mijp
n
j =

∑
j

(
pnj
∑
i

Mij

)
=
∑
j

pnj = 1

• pn+1
i ≤ 1 since there are no negative entries and it needs to sum to 1

The final question we want to check is if Page Rank will converge to a single answer:

p∞ = lim
k→∞

(M)kp0

Then higher probabilities in p∞ implies a greater importance for a page (i.e. a higher rank)

Efficient Page Rank

A naive implementation of Page Rank will repeatedly multiply massive matrices each search
(dimensions larger than 1 billion × 1 billion)

To make it faster we exploit precomputation and sparsity:

• Precomputation: ranking vector p∞ is independent of the query so only needs to be computed once
(then recomputed once a day/week)

– Each search will finds the subset of p∞ that matches the keywords

• Sparse Matrix : the default transition matrix P is a sparse matrix (Google matrix M is fully dense)

– Dense matrix: all entries are non-zero (stored in N ×N , manipulate "normally")

– Sparse matrix: most entries are zero (able to use a sparse data structure and usually prefer
algorithms that avoid "destroying" sparsity (i.e. avoid filling zero entries))
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When performing sparse matrix-vector multiplication only non-zero matrix elements are ever accessed
making it much faster.

The goal is to use linear algebra manipulations to perform the main iteration

pn+1 = Mpn

without ever creating/storing M . Thus we start with the definition of the Google matrix:

M = α

(
P +

1

R
edT

)
+

1− α

R
eeT

• M is a fully dense matrix

• P is sparse since most pages to not link to a billion other pages

• edT is dense in dead end columns (pages that do not link anywhere)

• eeT is fully dense (of all ones)

pn+1 = Mpn

= αPpn︸ ︷︷ ︸
(1)

+
α

R
edT pn︸ ︷︷ ︸
(2)

+
1− α

R
eeT pn︸ ︷︷ ︸

(3)

1. Just perform sparse matrix-vector multiply (numpy has a built in sparse matrix data structure)

2. Perform dT pn first (since edT pn = e(dT pn)) to produce a scalar then we have
α

R
(dT pn)e

3. Perform eT pn first (since eeT pn = e(eT pn)) to produce 1 because pn sums to 1 and e is all ones

1− α

R
e

Putting this together we have:

pn+1 = (αP )pn +

(
(αdT )

R
pn +

1− α

R

)
e

Algorithm usually repeats until difference between pk and pk−1 is smaller than some tolarence.

In modern serach have engines other factor besides pure link-based ranking:
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• For example we can change standard teleportation with

1− α

R
eeT → (1− α)veT

where special probbability vector v places extra weight on certain sites you like (or payed you)

Review: Eigenvalues and Eigenvectors

For matrix A when we have non-zero eigenvalue λ and non-zero eigenvector x then

Ax = λx → (A− λI)x = 0

which implies that A− λI must be singular (non-invertable) for some λ

A singular matrix A satisfies detA = 0 so we solve the characteristic polynomial given by

det(A− λI) = 0

Then find any vector in the nullspace of (A− λI) (vector space that gets mapped to zero)

(since we want Ax = λx we have x is both sides)

Recall: if matrix is invertible/non-singular then Ax = 0 has only the solution x = 0

Convergence of Markov Matrices

1. Every Markov matrix Q has 1 as an eigenvalue

• Eigenvalues of Q and QT are equal since det(Q) = det(QT ) in general, and we have

QT e = (1)e

This is true because columns of Q sum to 1, so the rows of QT sum to 1

• Then λ = 1 is an eigenvalue of QT and also an eigenvalue of Q

2. Every eigenvalue of a Markov matrix Q satisifies |λ| ≤ 1. So 1 is the largest eigenvalue

• First show that |λi| ≤ 1 in QT by letting λ and x be eigenvalue/vector pair for Q

QTx = λx

• Let k be the index of largest magnitude entry in x such that |xj | ≤ |xk| for all j

(QTx)k =
n∑

j=1

Qjkxj = λxk
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• Consider

|λxk| = |λ||xk| =
∣∣∣∣ n∑
j=1

Qjkxj

∣∣∣∣
≤

n∑
j=1

Qjk|xj | (Triangle inequality)

≤
n∑

j=1

Qjk|xk| (Since |xj | ≤ |xk|)

≤ |xk|
n∑

j=1

Qjk

≤ |xk| (Column sums of Q are each 1)

Thus |λ||xk| ≤ |xk| becomes |λ| ≤ 1 for QT . This holds for Q as well since it has the same eigenvalues.

3. A Markov matrix Q is a positive Markov matrix if Qij > 0 for all i, j (definition so no proof)

4. Q is a positive Markov matrix implies one linearly independent eigenvector of Q with |λ| = 1

• Won’t prove this see course notes for reference if curious

• If Q is positive Markov matrix then eigenvector corresponding to λ = 1 is unique
(Markov chain must converge to only one result)

Using all these theorems we will prove that Page Rank will converge.

Theorem: If M is a positive Markov matrix, then Page Rank converges to a unique vector p∞ for initial
probabilty vector p0.

Let x⃗ℓ be the corresponding eigenvector for λℓ for all ℓ.
Assume we can write p0 (vector of equal values that sums to 1) as a linear combination of eigenvectors v⃗ℓ

p0 =
∑
ℓ

cℓx⃗ℓ for scalars cℓ

Assume eigenvalues are sorted, so |λ1| > |λ2| ≥ |λ3| ≥ etc.

Then x⃗1 corresponds to λ1 = 1, and as a result PageRank computes

(M)kp0 = (M)k
R∑
ℓ−1

cℓx⃗ℓ =

R∑
ℓ=1

(M)kcℓx⃗ℓ

=

R∑
ℓ=1

λk
ℓ cℓx⃗ℓ

= c1x⃗1 +
R∑
ℓ=2

λk
ℓ cℓx⃗ℓ (Since λ1 = 1)

We know that |λℓ| < 1 for ℓ > 1 so

p∞ = lim
k→∞

(M)kp0 = lim
k→∞

(
c1x⃗1 +

R∑
ℓ=2

λk
ℓ cℓx⃗ℓ

)
= c1x⃗1 +

R∑
ℓ=2

(
lim
k→∞

λk
ℓ

)
cℓx⃗ℓ = c1x⃗1
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We see that the other non-dominant eigenvalues get scaled to 0.
(Result of PageRank is just approximating the dominant eigenvector)

If we start with a different vector q0 =
∑

ℓ bℓx⃗ℓ then q∞ = b1x⃗1

Since q∞ and p∞ are probability vectors they both sum to 1

R∑
i=1

b1x1(i) =

R∑
i=1

c1x1(i) = 1 → b1

R∑
i=1

x1(i) = c1

R∑
i=1

x1(i) → b1 = c1

Thus p∞ = q∞ so PageRank converges to a unique vector

Convergence Rate

the 2nd largest eigenvalue |λ2| will determine how quickly PageRank will converge as it is the slowest
decreasing unwanted component of p0

pk = (M)kp0 = c1x⃗1 +

R∑
ℓ=2

λk
ℓ cℓx⃗ℓ

It turns out for our Google matrix |λ2| ≈ α (won’t prove this)

Example: Say we have α = 0.85 and we perform:

α = 0.85 → |λ2|114 ≈ |0.85|114 ≈ 10−8

This says after 114 iterations, vector components of p0 not corresponding to eigenvalue |λ1| will be scaled
down by 10−8 (or smaller)

Then we can say vector p114 is a good approximation the dominant eigenvector x⃗1.

Smaller |λ2| ≈ α implies faster convergence, however α = 0 is only random teleportation (completely
ignores the link structure) so it is a trade off accuracy for efficiency.
(Changes to α change the Google matrix which changes the resulting dominant eigenvector)

PageRank as Power Iteration

PageRank is a special case of power iteration (or power method) for solving general eigenvector problems.

It has many theoretical implications and extensions and applications beyond ranking of web pages, for
example as a recommender system for servieces like Facebook, Twitter, Amazon, etc.

Linear Systems of Equations

Ax = b

Fluid animations require solving linear system of more than one million unknowns for each frame.
10 seconds of video at 30 frames per second requires around 300 linear systems with size 1, 000, 0002 each.

We will use Gaussian Elimination however the way we will interpret it will be slightly different:

• Factor matrix A into A = LU where L and U are triangular
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• Solve Lz = b for intermediate vector z (Forward Solve, L is lower triangular)

• solve Ux = z for x (Backword Solve, U is upper triangular)

Example: Gaussian Elimination as LU Factorization. Consider the linear system:

Ax = b ↔

1 1 1
1 −2 2
1 2 −1

x =

04
2


Perform Gaussian elimination while keeping the multiplies of the row operations in the zeros:

R2 := R2 − (1)R1

 1 1 1 | 0
[1] −3 1 | 4
1 2 −1 | 2



R1 := R3 − (1)R1

 1 1 1 | 0
[1] −3 1 | 4
[1] 1 −2 | 2


R3 := R3 − (−1

3)R2

 1 1 1 | 0
[1] −3 1 | 4
[1] [−1/3] −5/3 | 10/8


Now we have split matrix A into its LU factorization:

L =

 1 0 0
X 1 0
X X 1

 U =

X X X
0 X X
0 0 X

 → L =

1 0 0
1 1 0
1 −1/3 1

 U =

1 1 1
0 −3 1
0 0 −5/3


To complete this solve we just use U and perform back substitution to find x

−5

3
x3 =

10

3
=⇒ x3 = −2

−3x2 + x3 = 4 =⇒ x2 = −2

x1 + x2 + x3 = 0 =⇒ x1 = 4

Notice L encodes some information about how it transformed b, which may be useful for solving Ax = b′

In general, if we are given the factorization A = LU we do

Ax = b → LUx = b → L(Ux) = b

Then defining z = Ux we can solve using system in two steps:

• First solve Lz = b for z

• Then solve Ux = z for x

This is faster because L and U are both triangular.

Remark: Usually use Gaussian elimination directly on the matrix (rather than a system) to get LU .
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An application of this is Polynomial fitting of y = p(x), if only changing the y-values being interpolated
we can factorize the Vandermonde matrix once and reuse it

V =


1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n

 c⃗ =

c1...
cn

 y⃗ =

y1...
yn



Permutation Matrix

An issue with out current methods is that numerical problems can occur when implemented in code:
1 For k = 1,...,n
2 For i = k + 1,...,n
3 mult := a_ik / a_kk # possible divide by (exactly or nearly) zero
4 a_ik := mult
5 for j = k+1,...,n
6 a_ij := a_ij - mult*a_kj
7 EndFor
8 EndFor
9 EndFor

Even when the diagonal entry akk is close to zero then aik/akk will produce a value large in magnitude
which can cause large floating errors during subtraction (or an error when akk = 0).

During Guassin elimination this is solved by swapping rows when its diagonal entry is zero, but for our
nuermical implementations we will always swap to minimize floating point error incurred.

Strategy: Find a row with the largest mangnitude entry in the current column beneath the current row
and swap those rows if larger than the current entry.

We don’t make these swaps directly to A, instead we take P to be an identity matrix and swap its rows:

A =

0.5 2 3
1 4 2
−3 2 −1

 P =

1 0 0
0 1 0
0 0 1

 → P =

0 0 1
0 1 0
1 0 0

 → PA =

−3 2 −1
1 4 2
0.5 2 3


We call P the permutation matrix and now find the LU factoriation of

PA = LU

This turns the linear system we are solving into PAx = Pb and we usually use b′ = Pb to get LUx = b′.

Example: LU Factoriation with Pivoting. Find PA = LU factoriation for 1 4 5
−2 3 3
3 0 6


Initialize P = I and notice for column 1, row 3 has the largest value, so swap row 1 and row 3:

P =

0 0 1
0 1 0
1 0 0

  3 0 6
−2 3 3
1 4 5

 →

 3 0 6
[−2/3] 3 7
[1/3] 4 3
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For column 2, row 3 has largest value, so swap row 2 and row 3:

P =

0 0 1
1 0 0
0 1 0

  3 0 6
[1/3] 4 3
[−2/3] 3 7

 →

 3 0 6
[1/3] 4 3
[−2/3] [3/4] 19/4


Thus we arrive at

L =

 1 0 0
1/3 1 0
−2/3 3/4 1

 U =

3 0 6
0 4 3
0 0 19/4

 P =

0 0 1
1 0 0
0 1 0


L is lower unit triangular and U is upper triangular. We can verify PA = LU for a sanity check.

To solve Ax = b we do

1. Compute b′ = Pb (multiply to permute b)

2. Solve Lz = b′ (forward solve)

3. Solve Ux = z (backward solve)

Using our PA = LU factorization solve Ax = b for

b =

 4
1
−3


1. Compute b′ = Pb

Pb =

0 0 1
1 0 0
0 1 0

 4
1
−3

 =

−3
4
1

 = b′

2. Solve Lz = b′

Lz =

 1 0 0
1/3 1 0
−2/3 3/4 1

 z =

−3
4
1

 → z =

 −3
4− 1

3(−3) = 5
1− 3

4(5) +
2
3(−3) = −19/4


3. Solve Ux = z

Ux =

3 0 6
0 4 3
0 0 19/4

x =

 −3
5

−19/4

 → x =

 1
2
−1


Notice that for step (1) we don’t actually need to matrix muliply, we can just swap the rows

Scipy has a LU factorization scipy.linalg.lu along with a triangular solve scipy.linalg.solve_triangular
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Cost of Solving Linear Systems

We will measure the cost in total FLOPs: Floating Point OPerations

True operation count be hardware dependent (Ex: FMA (Fused Multiply Add) can be a single operation)

Remark: FLOPS is Floating Point OPerations per Second (which is not what we are looking for)

We will need two sum identities:
n∑

i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

• FLOP count for LU factorization

n∑
k=1

n∑
i=k+1

1 +
n∑

j=k+1

2

 =
n∑

k=1

n∑
i=k+1

(1 + (n− (k + 1) + 1)2)

=

n∑
k=1

n∑
i=k+1

(1 + 2n− 2k)

=
n∑

k=1

(n− k)(1 + 2n− 2k)

=
n∑

k=1

(2k2 + k(−4n− 1) + (2n2 + n))

= 2
n(n+ 1)(2n+ 1)

6
+ (−4n− 1)

n(n+ 1)

2
+ n(2n2 + n)

=
2n3

3
+ n2 +

n

3
− 2n3 − 5n2

2
− n

2
+ 2n3 + n2

=
2n3

3
− n2

2
− n

6

=
2n3

3
+O(n2)

• FLOP count for triangular solve

n∑
i=1

1 +
n∑

j=i+1

2

 = n+
n∑

i=1

2(n− (i+ 1) + 1)

= n+
n∑

i=1

(2n− 2i)

= n+ 2n2 − 2
n(n+ 1)

2
= n+ 2n2 − (n2 + n)

= n2

Thus LU factorization costs 2n3

3 +O(n2) FLOPs

Triangular solves cost n2 +O(n) FLOPs each so total is 2n2 +O(n)

Factorization cost dominates when n is large, if given the factorization solving for RHS is relatively cheaper.
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LU as Matrix Operations

Recall that the row operations can represented as matrices.

Example: row operation R2 := R2 − (
a2,1
a1,1

)R1 can be written as matrix

M =

 1 0 0
−a2,1

a1,1
1 0

0 0 1

 →

 1 0 0
−3/2 1 0
0 0 1


︸ ︷︷ ︸

M

 2 3 4
3 4 −1
−2 2 1


︸ ︷︷ ︸

Aold

=

 2 3 4
0 −1/2 −7
−2 2 1


︸ ︷︷ ︸

Anew

Thus the process of LU factoriation can be viewed as a sequence of matrix multiplicaitons applied to A.

These row operations create U , e.g. in the 3× 3 case we have shown:

M (3)M (2)M (1)A = U

Then we have
A =

(
M (3)M (2)M (1)

)−1
U =

(
m(1)

)−1 (
m(2)

)−1 (
m(3)

)−1

︸ ︷︷ ︸
L

U

The inverse of M (i) is the same matirx but with the off-diagonal entry negated 1 0 0
−3/2 1 0
0 0 1

−1

=

 1 0 0
3/2 1 0
0 0 1


The effect of LU factoriation is to left-multiply A by matrices M (k) that comprise L−1 to produce U

M (3)M (2)M (1)A = L−1A = U

interleaving permutation matrices P (k) before each M (k) leads to the PA = LU factorization.

Solving Ax = b by Inverting A

An obvious alternative for solving Ax = b is to invert A to get A−1 then find A−1b = x

To invert A we can do

• Factor A into A = LU as usual

• Find columns of A−1 by solving LUx = ei for i = 1, . . . , n

The cost to invert is one LU factorization and n pairs of triangular solves, then we need to add the cost
of multiplying A−1b.

Not only is it slow but this method will also incur more floating point error.

As a general rule of thumb: most numerical algorithsm avoid ever computing A−1

Norms and Conditioning

We will see the relationship between the norm and conditioning of a matrix.

• Norms are measurement of size/magnitude of vectors or matrices

• Conditioning describes how the output of a matrix changes with a change to input
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Vector Norms

For a vector x = [x1, . . . , xn]
T some common choices of norms are:

• 1-norm (Manhatten norm):

||x||1 =
n∑

i=1

|xi|

• 2-norm (Euclidean norm)

||x||2 =

√√√√ n∑
i=1

x2i

• ∞-norm (max norm)
||x||∞ = max

i
|xi|

We can collect all these the p-norm, for p = 1, 2,∞, which is written as:

||x||p =

(
n∑
i=i

|xi|p
)1/p

(in the ∞ case this only holds for the limit of the RHS)

Some key properties of norms:

• If the norm is zreo, then the vector must be the zero-vector

||x|| = 0 =⇒ xi = 0 ∀i

• The scaling the vector must scale the norm by the same amount

||αx|| = |α| · ||x|| for scalar α

• The triangle inequality holds:
||x+ y|| ≤ ||x||+ ||y||

numpy.linalg.norm or scipy.linalg.norm implement vector (and matrix) norms

Matrix Norms

The standard matrix norms are:

• 1-norm (max absolute column sum)

||A||1 = max
j

n∑
i=1

|Aij |

• 2-norm (spectral norm is related to eigenvalues)

||A||2 =
√

max magnitude eigenvalue of ATA
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• ∞-norm (max absolute row sum)

||A||∞ = max
i

n∑
j=1

|Aij |

• Frobenius norm

||A||F =

√√√√ n∑
i=1

n∑
j=1

A2
ij

Matrix norm properties:
||A|| = 0 ⇐⇒ Aij = 0 ∀i, j

||αA|| = |α| · ||A|| for scalar α

||A+B|| ≤ ||A||+ ||B||

||Ax⃗|| ≤ ||A|| · ||x⃗||

||AB|| ≤ ||A|| · ||B||

||I|| = 1

Conditioning of Linear Systems

Conditioning describes how the output of changes with some change in input. It shows how difficult it is
to find a good solution to a problem, independent of the algorithm/numerical method used.

When solving a linear system Ax = b how much does a perturbation of b or A cause solution x to change:

• Well-conditioned if x changes little

• Ill-conditioned if x changes lots

Example: finding the intersection between two lines

• Well-conditioned case: lines are nearly perpendicular

• Ill-conditioned case: lines are nearly parallel

– a small change in the angle of one line can really change where the intersection is.

Conditioning derivations:
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• Perturbing b in the system Ax = b

A(x+∆x) = b+∆b → A∆x = ∆b → ∆x = A−1∆b

1. Apply norm rules to Ax = b

||b|| = ||Ax|| ≤ ||A|| · ||x|| → 1

||x||
≤ ||A||

||b||

2. Apply norm rules to ∆x = A−1∆b

||∆x|| = ||A−1∆b|| ≤ ||A−1|| · ||∆b|| → ||∆x|| ≤ ||A−1|| · ||∆b||

Combine (1) and (2) by multiplication

1

||x||
· ||∆x|| ≤ ||A||

||b||
· ||A−1|| · ||∆b|| → ||∆x||

||x||
≤ ||A−1|| · ||A|| · ||∆b||

||b||

Letting κ = ||A−1|| · ||A|| we have
||∆x||
||x||

≤ κ(A)
||∆b||
||b||

• Perturbing A in the system Ax = b

(A+∆A)(x+∆x) = b → Ax+A∆x+∆A(x+∆x) = b

Subtract off Ax = b and rearrange

A∆x = −∆A(x+∆x) → ∆x = −A−1∆A(x+∆x)

Take the norms and apply the norm rules

||∆x|| ≤ ||A−1|| · ||∆A|| · ||x+∆x||

Multiply by 1 = ||A||
||A|| , rearrange, then let κ = ||A−1|| · ||A|| to get

||∆x||
||x+∆x||

≤ κ(A)
||∆A||
||A||

The conditioning number of a matrix A is denoted κ(A) = ||A|| · ||A−1||

κ ≈ 1 → A is well-conditioned

κ ≫ 1 → A is ill-conditioned

Any norm will work, however, different norms will give a different κ (condition number).

A useful property of vector/matrix norms is equivalence which states they do not different from one another
by more than a constant factor :

C1||x||a ≤ ||x||b ≤ C2||x||a
for some constants C1, C2.
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Residual

As a proxy for error we often using the residual r

r = b−A(xapprox)

the exact solution (xapprox = x) should give r = 0

This residual r can be easily computed (unlike the error) but how does it relate to error?

• Theme xapprox = x+∆x then

r = b−A(x+∆x) → A(x+∆x) = b− r

• r looks like a perturbation of b, so applying the earlier bound using ∆b = r we have

||∆x||
||x||

≤ κ(A)
||∆b||
||b||

→ ||∆x||
||x||

≤ κ(A)
||r||
||b||

The solution’s relative error ||∆x||
||x|| is bound by κ times the relative size of residual r w.r.t. b

Thus if we roughly know A’s condition number (κ(A) = ||A||·||A−1||) then the computed residual indicates
how large the error can be (in the worst case).

• if κ ≈ 1 then a small residual indicates a small relative error

• if κ is large, small residual can still mean error is large

Many algorithms for solving Ax = b are iterative (rather than direct like LU/Gaussian elimination)

Itertive methods update an estimate until the residual dictates the solution is good enough.
(CS 475 for more iterative and direct schemes, entire semester on this last two topics)

Gaussian Elimination Error

Ax = b is quite stable and accurate but not exact, Wilkinson [1961] showed that GE’s numerical result x̂
gives the exact solution to a nearby problem:

(A+∆A)x̂ = b

where E is machine epsilon and ||∆A|| = ||A||E

Applying our earlier bound gets us

||∆x||
||x+∆x||

≤ κ(A)
||∆A||
||A||

→ ||x− x̂||
||x̂||

≤ κ(A)
||∆A||
||A||

= κ(A)
||A||E
||A||

= κ(A)E

Example: if κ(A) = 1010 and E = 10−16 then relative error is around 10−6 or around 6 significant digits
of accuracy.

Always remember that conditioning is a property of the problem, that is a system Ax = b is well/ill-
conditioned independent of how we choose to solve it.
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