CS 370: Numerical Computation
 University of Waterloo
 Instructor: Christopher Batty

Fall 2022

Andrew Wang

Table of Contents

Floating Point Numbers 5
Representing Values from \mathbb{R} 5
Overflow and Underflow 5
Floating Point Standards 5
Floating Point Density 6
Floating Point Error 6
Machine Epsilon 6
Arithmetic with Floating Point 7
Error Bounds 7
Cancellation Errors 8
Floating Point Rule of Thumbs 8
Sources of Errors 9
Conditioning and Stability 9
Stability Analysis 9
Interpolation 10
Polynomial Interpolation 10
Vandermonde Matrices 10
The Monomial Basis 10
The Lagrange Basis 10
Example: Linear System and Lagrange Polynomials 11
Polynomial Interpolation for Many Points 11
Hermite Interpolation 12
Vandermonde Approach for Hermite Interpolation 12
Closed-Form Solution for Hermite Interpolation 12
Cubic Spline Interpolation 13
Counting Unknowns and Equations 13
Boundary Conditions (BC) 14
Efficient Construction of Cubic Splines via Hermite Interpolation 14
Cubic Splines via Hermite Interpolation 14
Efficient Splines Summary 15
Example Problem 15
Efficient Splines Matrix Structure 16
Parametric Curves 16
Arc-Length Parameterization 16
Going beyond 17
Ordinary Differential Equations (ODE) 18
Forward Euler Time-Stepping 19
Forward Euler Examples 19
Deriving Forward Euler 20
Error of Forward Euler 21
Higher Order Time Stepping Schemes 21
Derivative Approximation 21
More Accurate Time-Stepping 22
Trapezoidal Rule (Crank-Nicolson) 22
Explicit vs Implicit Schemes 22
Modified/Improved Euler 22
Improved Euler Example 23
Time Integration Methods So Far 23
More Time Stepping Schemes 24
Backwords Euler Method 24
Explicit Runge Kutta Schemes 24
4th Order Runge Kutta (RK4) 24
Global Error 24
Multistep Schemes 25
Implicit Multistep: Backwards Differentiation Formula (BDF) Methods 25
Explicit Multistep: Adams-Bashforth 26
Higher Order ODEs 26
Stability 27
Explicit Scheme Stability: Forward Euler 27
Implicit Scheme Stability: Backword Euler 28
Explicit Scheme Stability: Improved Euler 28
Test Equation Stability Visualized 29
Stability in General (Beyond Test Equation) 30
Local Truncation Error 30
Local Truncation Error of Trapezoidol 30
Local Truncation Error of BDF2 31
Adaptive Time-Stepping 32
Basic Algorithm 32
Usage of Adaptive Time-Stepping 33
Stiff Problems 33
The Fourier Transform 35
Continuous Fourier Series 35
Orthogonality Relations 36
Determing Coefficients of Fourier Series 36
Complex Number Review 37
Fourier Series with Complex Exponentials 37
Discrete Fourier Transform 38
Roots of Unity 38
Inverse Discrete Fourier Transform (IDFT) 39
Discrete Fourier Transform (DFT) 40
Discrete Fourier Transform Examples 40
Matrix Form of DFT and IDFT 42
Fast Fourier Transform 42
Dividing Up the Input 42
Fast Fourier Transform (FFT) 43
Inverse Fast Fourier Transform (IFFT) 44
Naive vs FFT Performance 44
FFT Example 44
Applications of the Fourier Transform 45
Image Compression 45
Understanding Aliasing 47
Correlation 50
Numerical Linear Algebra 52
Page Rank 52
Random Surfer Model 53
Markov Chain Matrix 54
Efficient Page Rank 55
Review: Eigenvalues and Eigenvectors 57
Convergence of Markov Matrices 57
Convergence Rate 59
PageRank as Power Iteration 59
Linear Systems of Equations 59
Permutation Matrix 61
Cost of Solving Linear Systems 63
LU as Matrix Operations 64
Solving $A x=b$ by Inverting A 64
Norms and Conditioning 64
Vector Norms 65
Matrix Norms 65
Conditioning of Linear Systems 66
Residual 68
Gaussian Elimination Error 68

Floating Point Numbers

Numerical Computation in our case is:
A computer approximation of some mathematical value/problem, usually dealing with (approximate) real numbers

Analytical solutions are the exact solutions while numerical solutions are approximate solutions.

Representing Values from \mathbb{R}

Real numbers, \mathbb{R}, are

- Infinite in extent: $\exists x \in \mathbb{R}$ such that $|x|$ is arbitrarily large
- Infinite in density: $\forall a, b \in \mathbb{R}$ if $a<b$ then there are infinitely many $x \in \mathbb{R}$ that satisfy $a \leq x \leq b$

It is impossible to encode the reals with only a finite number of bits so we approximate by:

1. Multiply by power of β (base of the number representation) to shift into normalized form:

$$
d_{1} d_{2} d_{3} d_{4} \cdots=0 . d_{1} d_{2} d_{3} d_{4} \cdots \times \beta^{p} \quad \text { where } d_{1} \neq 0
$$

2. Convert into some specific floating point system \mathcal{F} characterized by 4 integer parameters $\{\beta, t, L, U\}$:

$$
\pm 0 . d_{1} d_{2} \cdots d_{t} \times \beta^{p} \quad \text { for } L \leq p \leq U \text { and } d_{1} \neq 0 \text { (special case for } 0 \text {) }
$$

- Density (or precision) is bounded by limited number of digits using t
- Extent (or range) is bounded by limiting range of value for exponent p

We are only considering two rounding modes when converting from \mathbb{R} to floating point

- Round-to-nearest: round to closest number in \mathcal{F} (default option)
- Truncation: discard digits after the $t^{t h}$

Overflow and Underflow

When exponent p is too large $(>U)$ or too small $(<L)$ our system simply cannot represent the number.

- For underflow, simply round answer to 0
- For overflow, we produce a $\pm \infty$ (or NaN - not a number)

Floating Point Standards

The IEEE created two of the most common standard floating point systems

- Single precision (32 bits): $\{\beta=2, t=24, L=-126, U=127\}$
- Double precision (64 bits): $\{\beta=2, t=53, L=-1023, U=1023\}$

Arithmetic using these are always implemented directly in hardware (CPU/GPU/etc)

Floating Point Density

It is important to remember that unlike fixed point, floating point number are not evenly spaced!
For example: $\mathcal{F}=\{\beta=2, t=3, L=-1, U=2\}$ will represent non-negative values spaced as

$0, \quad 0.100 \times 2^{-1}, \quad 0.101 \times 2^{-1}, \quad 0.110 \times 2^{-1}, \quad 0.111 \times 2^{-1}, \quad 0.100 \times 2^{0}, \quad 0.101 \times 2^{0}, \quad \cdots, \quad 0.111 \times 2^{2}$

Floating Point Error

We will look at two ways to measure error:

- Absolute error: actual distance from exact to approximation

$$
E_{\text {abs }}=\left|x_{\text {exact }}-x_{\text {approx }}\right|
$$

- Relative Error: distance from exact to approximation relative to size of exact value

$$
E_{\text {rel }}=\frac{\left|x_{\text {exact }}-x_{\text {approx }}\right|}{\left|x_{\text {exact }}\right|}
$$

A rough rule of thumb: a result is correct to roughly s digits after rewriting $E_{\text {rel }}$ as

$$
0.5 \times 10^{-s} \leq E_{\mathrm{rel}}<5 \times 10^{-s}
$$

Some examples:

- $E_{\text {rel }} \approx 0.4 \times 10^{-3}=4 \times 10^{-4}$ implies 4 correct digits in $x_{\text {approx }}$
- $E_{\text {rel }} \approx 4 \times 10^{2}$ implies -2 correct digits (or no correct digits) in $x_{\text {approx }}$

Machine Epsilon

Machine Eplison E is the largest relative error in the conversion from real to floating point

- It is defined as the smallest E such that $f l(1+E)>1$
- for a FP system $\mathcal{F}=\{\beta, t, L, U\}$ with
- rounding during conversion: $E=\frac{1}{2} \beta^{1-t}$
- truncating during conversion: $E=\beta^{1-t}$
- This means we can say that for any $x \in \mathbb{R}$ in the range of \mathcal{F} that

$$
f l(x)=x(1+\delta) \quad \text { for some }|\delta| \leq E
$$

Arithmetic with Floating Point

The IEEE standard requires that for $w, z \in \mathcal{F}$

$$
w \oplus z=f l(w+z)=(w+z)(1+\delta) \quad \text { for some }|\delta| \leq E
$$

To perform addition we add w and z as if they were real then convert to our floating point approximation.

- The result is the same as the floating point approximation of the exact real result
- This is done in hardware by keeping extra "guard" digits to ensure this result
- This is in the same way for other operations like \otimes and \ominus

However this only applies to individual FP operations so it is not true that:

$$
(a \oplus b) \oplus c=a \oplus(b \oplus c)=f l(a+b+c)
$$

Since we evaluate

$$
(a \oplus b) \oplus c=\left((a+b)\left(1+\delta_{1}\right)+c\right)\left(1+\delta_{2}\right) \quad a \oplus(b \oplus c)=\left(a+(b+c)\left(a+\delta_{1}\right)\right)\left(1+\delta_{2}\right)
$$

This means that the result is order dependent and associativity is broken.

Error Bounds

for $a, b, c \in \mathcal{F}$ consider the relative error of $(a \oplus b) \oplus c$

$$
\begin{aligned}
E_{\text {rel }} & =\frac{|(a \oplus b) \oplus c-(a+b+c)|}{|a+b+c|} \\
& =\frac{\left.\mid\left((a+b)\left(1+\delta_{1}\right)+c\right)\left(1+\delta_{2}\right)-a-b-c\right) \mid}{|a+b+c|} \\
& =\frac{\left|(a+b) \delta_{1}+(a+b+c) \delta_{2}+(a+b) \delta_{1} \delta_{2}\right|}{|a+b+c|} \\
& \leq \frac{\left|(a+b) \delta_{1}\right|+\left|(a+b+c) \delta_{2}\right|+\left|(a+b) \delta_{1} \delta_{2}\right|}{|a+b+c|} \\
& \leq \frac{|a+b|\left|\delta_{1}\right|+|a+b|\left|\delta_{1} \delta_{2}\right|}{|a+b+c|}+\left|\delta_{2}\right| \\
& \leq \frac{|a+b|\left(E+E^{2}\right)}{|a+b+c|}+E
\end{aligned}
$$

$$
\leq \frac{\left|(a+b) \delta_{1}\right|+\left|(a+b+c) \delta_{2}\right|+\left|(a+b) \delta_{1} \delta_{2}\right|}{|a+b+c|} \quad \text { (by triangle inequality) }
$$

We will now weaken the bound so that the error applies to both $(a \oplus b) \oplus c$ and $a \oplus(b \oplus c)$

$$
\begin{aligned}
E_{\text {rel }} & \leq \frac{|a+b|\left(E+E^{2}\right)}{|a+b+c|}+\frac{|a+b+c|}{|a+b+c|} E \\
& \left.\leq \frac{|a|+|b|+|c|}{|a+b+c|}\left(E+E^{2}\right)+\frac{|a|+|b|+|c|}{|a+b+c|} E \quad \text { (by triangle inequality and adding }|c|\right) \\
& \leq \frac{|a|+|b|+|c|}{|a+b+c|}\left(2 E+E^{2}\right)
\end{aligned}
$$

This bound is for the worst case (actual error could be much less)

Cancellation Errors

The worst case for the bounds is when quantities have differing signs and similar magnitudes

- If a, b, c have same signs then $\frac{|a|+|b|+|c|}{|a+b+c|}=1$
- If a, b, c have different signs then $\frac{|a|+|b|+|c|}{|a+b+c|} \geq 1$ (can grow very large if $\left.a+b+c \approx 0\right)$

Catastrophic cancellation occurs when subtracting same magnitude numbers that contain some error

All significant digits cancelled out and we are left with no correct digits at all.

Floating Point Rule of Thumbs

Rule of thumb: prefer adding numbers of approximately the same size and sign

- adding large and small numbers can cause the smaller digits to get lost or "swamped"

Rule of thumb: try to reformulate computations to avoid cancellations

- catastrophic cancellation could occur from subtracting numbers of simular magnitude

Taylor series example: to evaluate $e^{-5.5}$ in FP we have

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \quad \text { or } \quad e^{-x}=\frac{1}{e^{x}}=\frac{1}{1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots}
$$

$e^{-5.5}=0.0040868$ and with 5 digits of accuracy we see that RHS performs much better

- using $x=-5.5$ on the LHS we have $e^{-5.5} \approx 0.0026363$
- using $x=5.5$ on the RHS we ahve $e^{-5.5} \approx 0.0040865$

Using IEEE double precision we compare $f(x)=\frac{1-\cos ^{2} x}{x^{2}}$ and $g(x)=\frac{\sin ^{2} x}{x^{2}}$ near $x=0$

The true solution is to approach 1 as $x \rightarrow 0$ however $f(x)$ behaves erratically since $\cos ^{2} x$ approachs 1

Sources of Errors

We will mainly focus on the first two

- Round-off error: due to FP representation and arithmetic
- Truncation error: e.g. truncating a Taylor series after n terms
- Uncertainty/error in input: e.g. from measurements
- Error/approximation in mathematical model: e.g. friction

Conditioning and Stability

Conditioning of a problem:

- How sensitive is the problem to changes in input? less \rightarrow well-conditioned more \rightarrow ill-conditioned

Stability of numerical algorithm:

- How sensitive is the algorithm to errors/changes in input? less \rightarrow stable more \rightarrow unstable

Note that:

- An poor algorithm can be unstable even for a well-conditioned problem
- An ill-conditioned problem limits how well we can expect any algorithm to perform

Stability Analysis

We can rewrite the integration problem as a recursive rule

$$
I_{n}=\int_{0}^{1} \frac{x^{n}}{x+\alpha} d x \quad \rightarrow \quad I_{0}=\log \frac{1+\alpha}{\alpha} \quad I_{n}=\frac{1}{n}-\alpha I_{n-1}
$$

Assume some initial error in E_{0} in I_{0} where

$$
E_{0}=\underbrace{\left(I_{0}\right)_{A}}_{\text {approx }}-\underbrace{\left(I_{0}\right)_{E}}_{\text {exact }}
$$

then the (signed) error E_{n} after n steps will be

$$
\begin{aligned}
E_{n} & =\left(I_{n}\right)_{A}-\left(I_{n}\right) E \\
& =\left(\frac{1}{n}-\alpha\left(I_{n-1}\right)_{A}\right)-\left(\frac{1}{n}-\alpha\left(I_{n-1}\right)_{E}\right) \\
& =-\alpha\left(\left(I_{n-1}\right)_{A}-\left(I_{n-1}\right)_{E}\right) \\
& =-\alpha E_{n-1}
\end{aligned}
$$

Thus we have $E_{n}=(-\alpha)^{n} E_{0}$ so we have two cases

- $|\alpha| \leq 1$ error does not grow - stable
- $|\alpha|>1$ error grows continiually - unstable

Interpolation

Given a set of points from unknown function $y=p(x)$ how do we approximate p 's values at other points

- Known: $p\left(x_{1}\right)=y_{1}, p\left(x_{2}\right)=y_{2}, \ldots, p\left(x_{n}\right)=y_{n}$
- Estimate: $y=p(x)$ for any point x such that $x_{1} \leq x \leq x_{n}$

Polynomial Interpolation

Unisolvence Theorem: Given n data pairs $\left(x_{i}, y_{i}\right), i=1, \ldots, n$ with distinct x_{i} there is a unique polynomial $p(x)$ of degree $\leq n-1$ that interpolates the data.

Vandermonde Matrices

For 3 data points we find the 3 unknown coefficients a, b, c that form the quadratic

$$
y=a+b x+c x^{2}
$$

Each data point gives 1 linear equation so we a 3×3 system

$$
\begin{aligned}
& a+b x_{1}+c x_{1}^{2}=y_{1} \\
& a+b x_{2}+c x_{2}^{2}=y_{2} \\
& a+b x_{3}+c x_{3}^{2}=y_{3}
\end{aligned} \quad \rightarrow \quad\left[\begin{array}{lll}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

In general for n points we have a linear system $V \vec{c}=\vec{y}$ where V is the Vandermonde matrix

$$
\left[\begin{array}{cccc}
1 & x_{1} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n-1}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Polynomial interpolation reduces to solving this linear system of equations.

The Monomial Basis

The form $p(x)=c_{1}+c_{2} x+\cdots+c_{n} x^{n-1}$ is called monomial form and can be written as

$$
p(x)=\sum_{i=1}^{n} c_{i} x^{i-1}
$$

- Monomial basis: the sequence $1, x, x^{2}, \ldots$
- Monomial form: sum of coefficients c_{I} times basis functions x^{i-1}

The Lagrange Basis

For the Lagrange method of interpolating polynomials we construct p by using

$$
p(x)=y_{1} L_{1}(x)+y_{2} L_{2}(x)+\cdots+y_{n} L_{n}(x)=\sum_{k=1}^{n} y_{k} L_{k}(x)
$$

Given n data points (x_{i}, y_{i}) we define the Lagrange basis function $L_{k}(x)$ to be

$$
L_{k}(x)=\frac{\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)} \quad \rightarrow \quad L_{i}\left(x_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

This property forces $p(x)$ to interpolate every x_{i} since

$$
\begin{aligned}
p\left(x_{i}\right) & =y_{1} L_{1}\left(x_{i}\right)+\cdots+y_{i} L_{i}\left(x_{i}\right)+\cdots+y_{n} L_{n}\left(x_{i}\right) \\
& =y_{1} \times 0 \quad+\cdots+y_{i} \times 1 \quad+\cdots+y_{n} \times 0
\end{aligned}
$$

This results in a polynomial that satisfies $p\left(x_{i}\right)=y_{i}$ for $i=1, \ldots, n$ by construction

Example: Linear System and Lagrange Polynomials

Find the linear polynomial that interpolates the points $\left(x_{1}, y_{1}\right)=(1,2)$ and $\left(x_{2}, y_{2}\right)=(-1,4)$

- We can solve the linear system of equations $c_{1}+c_{2} x_{1}=y_{1}$ and $c_{1}+c_{2} x_{2}=y_{2}$

$$
\left[\begin{array}{ll}
1 & x_{1} \\
1 & x_{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 1 & 2 \\
1 & -1 & 4
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
2 & 0 & 6 \\
-1 & 1 & -4
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

We get $c_{1}=3$ and $c_{2}=-1$ for the monomial form $p(x)=c_{1}+c_{2} x$ which results in $p(x)=3-x$

- We can also solve this using the Lagrange Basis

$$
L_{1}(x)=\frac{\left(x-x_{2}\right)}{\left(x_{1}-x_{2}\right)}=\frac{x-(-1)}{1-(-1)}=\frac{x+1}{2} \quad L_{2}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{x-1}{-1-1}=\frac{x-1}{-2}
$$

Using these for the Lagrange form $p(x)=y_{1} L_{1}(x)+y_{2} L_{2}(x)$ we get

$$
p(x)=2 \frac{x+1}{2}+4 \frac{x-1}{-2}=3-x
$$

We find that both methods result in the same solution of $p(x)=3-x$. However we still prefer using the Lagrange basis to the monomial basis because it avoids needing to solve a linear system.

Polynomial Interpolation for Many Points

Consider fitting a degree 10 polynomial to 11 points sampled evenly from $f(x)=\frac{1}{1+25 x^{2}}$:

Notice the excessive wiggling at the ends, this example of overfitting is called Runge's phenomenon.
Instead of using a single high degree polynomial we could instead create a piecewise function consisting of multiple lower degree polynomials.

Hermite Interpolation

Although interpolation with piecewise linear can produce a continuous function it is not "smooth" enough

This function is in C^{0}, which is to say it is continuous but the derivatives might not be.
Hermite interpolation gets more smoothness by fitting the polynomial to both values and deriatives to achieve C^{1}, which is function and first derivative continuity.

Vandermonde Approach for Hermite Interpolation

For polynomials with higher derivative data we will use a simular approach to before:

1. Express polynomial $p(x)$ in general form with unknown coefficients
2. Differentiate to find expressions for needed derivatives of $p(x)$
3. Plug in the value and derivative data to give linear equations
4. Solve for the polynomial coefficients

Usage: find the coefficients of the cublic polynomial $p(x)=a+b x+c x^{2}+d x^{3}$ using the Hermite data

$$
p\left(x_{1}\right)=y_{1} \quad p^{\prime}\left(x_{1}\right)=s_{1} \quad p\left(x_{2}\right)=y_{2} \quad p^{\prime}\left(x_{2}\right)=s_{2}
$$

Find $p^{\prime}(x)=b+2 c x+3 d x^{2}$ then create a system of linear equations using the data

$$
\left[\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
0 & 1 & 2 x_{1} & 3 x_{1}^{2} \\
0 & 1 & 2 x_{2} & 3 x_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
s_{1} \\
s_{2}
\end{array}\right]
$$

Piecewise Hermite Interpolation: Create one cubic function per pair of adjacent x values. Then by construction the value and derivative of the endpoints of cubic are shared and the piecewise function will have C^{1} continuity.

Closed-Form Solution for Hermite Interpolation

$$
p\left(x_{i}\right)=y_{i} \quad p^{\prime}\left(x_{i}\right)=s_{i} \quad p\left(x_{i+1}\right)=y_{i+1} \quad p^{\prime}\left(x_{i+1}\right)=s_{i+1}
$$

We define the cubic polynomial on the i-th interval (between x_{i} and x_{i+1}) to be $p_{i}(x)$ where

$$
\begin{aligned}
p_{i}(x) & =a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3} \\
p_{i}^{\prime}(x) & =b_{i}+2 c_{i}\left(x-x_{i}\right)+3 d_{i}\left(x-x_{i}\right)^{2}
\end{aligned}
$$

Plugging in the data

$$
\begin{aligned}
y_{i}=p_{i}\left(x_{i}\right) & =a_{i} \\
s_{i}=p_{i}^{\prime}\left(x_{i}\right) & =b_{i} \\
y_{i+1}=p_{i}^{\prime}\left(x_{i+1}\right) & =a_{i}+b_{i}\left(x_{i+1}-x_{i}\right)+c_{i}\left(x_{i+1}-x_{i}\right)^{2}+d_{i}\left(x_{i+1}-x_{i}\right)^{3} \\
s_{i+1}=p_{i}^{\prime}\left(x_{i+1}\right) & =b_{i}+2 c_{i}\left(x_{i+1}-x_{i}\right)+3 d_{i}\left(x_{i+1}-x_{i}\right)^{2}
\end{aligned}
$$

Solving this system gives

$$
\begin{gathered}
a_{i}=y_{i} \quad b_{i}=s_{i} \quad c_{i}=\frac{3 y_{i}^{\prime}-2 s_{i}-s_{i+1}}{\Delta x_{i}} \quad d_{i}=\frac{-2 y_{i}^{\prime}+s_{i}+s_{i+1}}{\Delta x_{i}^{2}} \\
\Delta x_{i}=x_{i+1}-x_{i} \quad y_{i}^{\prime}=\frac{y_{i+1}-y_{i}}{\Delta x_{i}}
\end{gathered}
$$

We can now solve a cubic Hermite problem directly note that $p_{i}(x)$ will usually need to be simplified.

- Knots: points where interpolant transitions from one polynomial/interval to another
- Nodes: points where some control points/data is specified

For Hermite interpolation these are the same but for other curve types (Ex Bezier curves) they can differ

Cubic Spline Interpolation

Hermite interpolation requires info on derivative values but we want to create a curve out of a set of points. For cubic spline interpolation fit a cubic $S_{i}(x)$ on each interval while requiring matching first and second derivatives (C^{2} continuity) between intervals.

Require interpolating conditions on each interval $\left[x_{i}, x_{i+1}\right]$

$$
S_{i}\left(x_{i}\right)=y_{i} \quad S_{i}\left(x_{i+1}\right)=y_{i+1}
$$

and derivative conditions are each interior point x_{i+1}

$$
\begin{aligned}
& S_{i}^{\prime}\left(x_{i+1}\right)=S_{i+1}^{\prime}\left(x_{i+1}\right) \\
& S_{i}^{\prime \prime}\left(x_{i+1}\right)=S_{i+1}^{\prime \prime}\left(x_{i+1}\right)
\end{aligned}
$$

Counting Unknowns and Equations

A cubic has 4 unknowns per interval and $n-1$ intervals (for n points) so there are $4 n-4$ unknowns.

- 2 interpolation (endpoint) conditions per interval: $2(n-1)=2 n-2$

$$
S_{i}\left(x_{i}\right)=y_{i} \quad S_{i}\left(s_{i+1}\right)=y_{i+1}
$$

- 2 derivative conditions per interior point (between first and last points): $2(n-2)=2 n-4$

$$
S_{i}^{\prime}\left(x_{i+1}\right)=S_{i+1}^{\prime}\left(x_{i+1}\right) \quad S_{i}^{\prime \prime}\left(x_{i+1}\right)=S_{i+1}^{\prime \prime}\left(x_{i+1}\right)
$$

This gives us $4 n-6$ equations which is less than the $4 n-4$ unknowns so there is not enough information for a unique solution.

To solve this we need 2 more equations (constraints) which we usually put at domain endpoints (the beginning and end) called boundary conditions or end conditions.

Boundary Conditions (BC)

- Clamped: slope are set to some value (both boundaries: complete or clamped spline)

$$
S^{\prime}\left(x_{1}\right)=\text { specified } \quad S^{\prime}\left(x_{n}\right)=\text { specified }
$$

- Free: second derivatives are set to zero (both boundaries: natrual cubic spline)

$$
S^{\prime}\left(x_{1}\right)=0 \quad S^{\prime \prime}\left(x_{n}\right)=0
$$

- Periodic: match start and end derivatives (wrap-around behaviour)

$$
S^{\prime}\left(x_{1}\right)=S^{\prime}\left(x_{n}\right) \quad S^{\prime \prime}\left(x_{1}\right)=S^{\prime \prime}\left(x_{n}\right)
$$

- Not-a-knot: match 3rd derivatives on end segments (second last and second point are not knots)

$$
S_{1}^{\prime \prime \prime}\left(x_{2}\right)=S_{2}^{\prime \prime \prime}\left(x_{2}\right) \quad S_{n-2}^{\prime \prime \prime}\left(x_{n-1}\right)=S_{n-1}^{\prime \prime \prime}\left(x_{n-1}\right)
$$

Efficient Construction of Cubic Splines via Hermite Interpolation

For a general linear system Gaussain elimination takes $O\left(N^{3}\right)$ time however cubic splines produces a special linear system that can be solved in $O(N)$ time.

- Hermite Interpolation: solve $n-1$ separate systems of 4 equations
- Cubic Splines: solve 1 system of $4(n-1)$ equations

Cubic Splines via Hermite Interpolation

We use Hermite interpolation as a stepping stone to build a cubic spline

$$
\begin{aligned}
S_{i}(x) & =a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3} \\
S_{i}^{\prime}(x) & =b_{i}+2 c_{i}\left(x-x_{i}\right)+3 d_{i}\left(x-x_{i}\right)^{2} \\
S_{i}^{\prime \prime}(x) & =2 c_{i}+6 d_{i}\left(x-x_{i}\right)
\end{aligned}
$$

If we use the closed form Hermite and force $S_{i}^{\prime \prime}\left(x_{i+1}\right)=S_{i+1}^{\prime \prime}\left(x_{i+1}\right)$ we can satisfy the cubic spline definition

$$
\begin{align*}
S_{i}^{\prime \prime}\left(x_{i+1}\right) & =2\left(\frac{3 y_{i}^{\prime}-2 s_{i}-s_{i+1}}{\Delta x_{i}}\right)+6\left(\frac{-2 y_{i}^{\prime}+s_{i}+s_{i+1}}{\Delta x_{i}^{\prime}}\right) \underline{\left(x_{i+1}-x_{i}\right)} \\
S_{i+1}^{\prime \prime}\left(x_{i+1}\right) & =2\left(\frac{3 y_{i+1}^{\prime}-2 s_{i+1}-s_{i+2}}{\Delta x_{i+2}}\right)+6\left(\frac{-2 y_{i+1}^{\prime}+s_{i+1}+s_{i+2}}{\Delta x_{i+2}^{2}}\right) \underline{\left(x_{i+1}-\widehat{\left.x_{i+1}\right)}\right.} 0 \\
S_{i}^{\prime \prime}\left(x_{i+1}\right) & =S_{i+1}^{\prime \prime}\left(x_{i+1}\right) \\
\frac{-6 y_{i}^{\prime}+2 s_{i}+4 s_{i+1}}{\Delta x_{i}} & =\frac{6 y_{i+1}^{\prime}-4 s_{i+1}-2 s_{i+2}}{\Delta x_{i+1}} \\
\Delta x_{i+1} s_{i}+2\left(\Delta x_{i}+\Delta x_{i+1}\right) s_{i+1}+\Delta x_{i} s_{i+2} & =3\left(\Delta x_{i+1} y_{i}^{\prime}+\Delta x_{i} y_{i+1}^{\prime}\right) \\
\Delta x_{i} s_{i-1}+2\left(\Delta x_{i-1}+\Delta x_{i}\right) s_{i}+\Delta x_{i-1} s_{i+1} & =3\left(\Delta x_{i} y_{i-1}^{\prime}+\Delta x_{i-1} y_{i}^{\prime}\right) \tag{reindex}
\end{align*}
$$

After solving for s_{i} we plug them into the closed form Hermite equations to get $a_{i}, b_{i}, c_{i}, d_{i}$ that also match the interval endpoint data and first derivative.

Remark: s_{i} is the slope at node i while $S_{i}(x)$ is the polynomial at interval i

Efficient Splines Summary

For $i=2$ to $n-1$ we have the equation

$$
\Delta x_{i} s_{i-1}+2\left(\Delta x_{i-1}+\Delta x_{i}\right) s_{i}+\Delta x_{i-1} s_{i+1}=3\left(\Delta x_{i} y_{i-1}^{\prime}+\Delta x_{i-1} y_{i}^{\prime}\right)
$$

For the 2 boundary conditions for the ends $i=1$ and $i=n$

- Clamped: slope is set to some value

$$
S_{1}^{\prime}\left(x_{1}\right)=\text { specified } \quad S_{n-1}^{\prime}\left(x_{n}\right)=\text { specified } \quad \rightarrow \quad s_{1}=S_{1}^{\prime}\left(x_{1}\right) \quad s_{n}=S_{1}^{\prime}\left(x_{n}\right)
$$

- Free: zero for the 2 nd derivative at the ends

$$
S_{1}^{\prime \prime}\left(x_{1}\right)=0 \quad S_{n-1}^{\prime \prime}\left(x_{n}\right)=0 \quad \rightarrow \quad s_{1}+\frac{1}{2} s_{2}=\frac{3}{2} y_{1}^{\prime} \quad \frac{1}{2} s_{n-1}+s_{n}=\frac{3}{2} y_{n-1}^{\prime}
$$

After solving plug s_{i} into the closed-form Hermite expression for each interval

$$
\begin{gathered}
S_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3} \\
a_{i}=y_{i} \quad b_{i}=s_{i} \quad c_{i}=\frac{3 y_{i}^{\prime}-2 s_{i}-s_{i+1}}{\Delta x_{i}} \quad d_{i}=\frac{-2 y_{i}^{\prime}+s_{i}+s_{i+1}}{\Delta x_{i}^{2}} \\
\Delta x_{i}=x_{i+1}-x_{i} \quad y_{i}^{\prime}=\frac{y_{i+1}-y_{i}}{\Delta x_{i}}
\end{gathered}
$$

Example Problem

Fit a spline to 4 points $(0,1),(2,1),(3,3),(4,-1)$ with clamped BC of $S_{1}^{\prime}\left(x_{1}\right)=1$ and $S_{3}^{\prime}\left(x_{4}\right)=-1$ Computing Δx_{i} and y_{i}^{\prime} for intervals $i=1$ to 3

$$
\Delta x_{1}=2 \quad \Delta x_{2}=1 \quad \Delta x_{3}=1 \quad y_{1}^{\prime}=0 \quad y_{2}^{\prime}=2 \quad y_{3}^{\prime}=-4
$$

Then we construct a system $T s=r$

- $i=1$ is a boundary

$$
s_{1}=1 \quad T_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \quad r_{1}=1
$$

- $i=2$ is an interior point

$$
\begin{array}{cl}
s_{1}+2(2+1) s_{2}+2 s_{3}=3(1-0+2 \cdot 2) & \rightarrow \quad s_{1}+6 s_{2}+2 s_{3}=12 \\
T_{2}=\left[\begin{array}{llll}
1 & 6 & 2 & 0
\end{array}\right] \quad r_{2}=12
\end{array}
$$

- $i=3$ is an interior point

$$
\begin{array}{rlrl}
s_{2}+2(1+1) s_{3}+s_{4} & =3(1 \cdot 2+1 \cdot-4) & \rightarrow & s_{2}+4 s_{3}+s_{4}=-6 \\
T_{3} & =\left[\begin{array}{llll}
0 & 1 & 4 & 1
\end{array}\right] & r_{3}=-6
\end{array}
$$

- $i=4$ is a boundary

$$
T_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] \quad r_{4}=-1
$$

Now we have the system

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 6 & 2 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right]=\left[\begin{array}{c}
1 \\
12 \\
-6 \\
-1
\end{array}\right]
$$

After solving for s_{i} and plugging into Hermite closed form we will have the coefficents for $S_{i}(x)$

Efficient Splines Matrix Structure

Notice that matrix T is tridiagonal meaning it only has entries on the diagonals and its neighbours.

$$
\left[\begin{array}{lllll}
X & X & & & \\
X & X & X & & \\
& X & X & X & \\
& & X & X & X \\
& & & X & X
\end{array}\right]
$$

A tridiagonal matrix is one type of sparse matrix and we only need a vector of 3 -tuples to store it. In addition, we will later figure out how to solve this system much faster than general systems.

Parametric Curves

So far we have only handled functions $y=p(x)$ but what if we want a curve that folds back over itself (multiple outputs at a single x)

Parametric curves will allow us to handle this more general case:

- Let x and y each be separate function of a new parameter t
- Then a point's position is given by a vector

$$
\overrightarrow{P(t)}=(x(t), y(t))
$$

we say the curve is parameterized by t which can be thought of as time (still only plot x and y)

- Parametric curves are not a specific type of curve but a way of using curves like piecewise linear, Hermite, cubic splines, Bezier, etc
Example: for a semi-circle the implicit equation is $x^{2}+y^{2}=1$ and some parametric forms are:
- $(x(t), y(t))=(\cos (\pi t), \sin (\pi t))$ for $0 \leq t \leq 1$
- $(x(t), y(t))=(\cos (\pi(1-t)), \sin (\pi(1-t)))$ for $0 \leq t \leq 1$
- $(x(t), y(t))=\left(\cos \left(\pi t^{2}\right), \sin \left(\pi t^{2}\right)\right)$ for $0 \leq t \leq 1$

The curve is parameterized in different ways that give the same result (for full circle we just change the bounds to $0 \leq t \leq 2$)

Arc-Length Parameterization

A common parameterization is to choose t as the distance along the curve.

For piecewise polynomials we can estimate this by taking the distance between two nodes:

$$
t_{1}=0 \quad t_{i+1}=t_{i}+\sqrt{\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}}
$$

Using this parameterization we then:

- Compute how the spline changes in the x direction over t
- Compute how the spline changes in the y direction over t
- Plot the resulting x and y values
\# convert input points in to a numpy array then split x and y values
arr = np.array(input)
$\mathrm{n}=$ arr.shape[0]
x_arr = arr[:,0]
y_arr = arr [:,1]
\# generate approximate arc-length parameterization
t = [0]
for i in range(1, n):
t.append(t[i-1] + sqrt((x_arr[i] - x_arr[i-1])**2 + (y_arr[i] - y_arr[i-1])**2))
\# use approximate arc-length parameterization to create splines
xspline = make_interp_spline(t, x_arr)
yspline = make_interp_spline(t, y_arr)
$v=n p . \operatorname{linspace}(0, n p . a \max (t), 25 \overline{0}) \quad \#$ could replace np.amax(t) with $t[-1]$
xs = xspline(v)
ys = yspline(v)
plt.plot(xs, ys)

Going beyond

Curves to Surfaces ideas for smooth curves can be generalized to 2D surfaces in 3D for example some commond surface types in comptuer aided design (CAD) include:

- Non-Uniform Rational B-splines (NURB)

A NURB surface with its control mesh of nodes

- Subdivision Surfaces

Cube mesh being subdivided recursively to form smooth subdivision surface
At Waterloo Professor Steve Mann studies applications of splines in CAD and 5-axis machining.
There is also the graduate level course "CS 779 Splines" to learn lots more.

Ordinary Differential Equations (ODE)

Differential equations relate some unknown function to its derivatives. They have many applications from modeling physical systems to predicting the market. In this course we will not be solving the ODEs analytically instead we will attempt to use numerical methods to find approximate solutions.

In general a first order ODE will have the form:

$$
y^{\prime}(t)=f(t, y(t))
$$

At any particular time t

- know the direction and magnitude that y is going
- don't know what the value of y is

Consider the simplest ODE $y^{\prime}(t)=\alpha \cdot y(t)$ this has a closed form solution

$$
y(t)=y_{0} \cdot e^{\alpha\left(t-t_{0}\right)} \quad \leftrightarrow \quad y(t)=C e^{\alpha t}
$$

We see that at any particular time t

- direction of mouse population is a constant α times the current number of mice $y(t)$
- number of mice cannot be said until we know number of mice at some other time

Initial Value Problems (IVP) will give the value of y at time t_{0} to be some constant y_{0}

$$
y^{\prime}(t)=f(t, y(t)) \quad(f \text { is Dynamics Function }) \quad y\left(t_{0}\right)=y_{0} \quad(\text { Initial Conditions })
$$

System of Differential Equations: a model with multiple variables that interact with each other (Ex: (x, y) coordinate of some moving object)

$$
\text { Two dynamics functions: }\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]^{\prime}=\left[\begin{array}{l}
f_{x}(t, x(t), y(t)) \\
f_{y}(t, x(t), y(t))
\end{array}\right] \quad \text { Two initial conditions: } \quad\left[\begin{array}{l}
x\left(t_{0}\right) \\
y\left(t_{0}\right)
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

Time Stepping: method of numerically solving ODEs given some initial conditions by repeatedly making steps of size h each time and using y^{\prime} to update the y value.

- Begin: $n=0, t=t_{0}, y=y_{0}$
- Repeat: compute y_{n+1} using y and y^{\prime}, increment time $t_{n+1}=t_{n}+h$, advance $n=n+1$

There are several different varieties of time-stepping methods:

- Single-step vs Multistep: only use information from current step, or from previous timesteps as well
- Explicit vs Implicit: can we evalute y_{n+1} directly, or do we need to solve some implicit equation
- Timestep size: do we use a constant timestep h, or allow it to vary

Forward Euler Time-Stepping

Forward Euler is very simple explicit and single-step scheme that just repeats the following:

- Compute the current slope

$$
y_{n}^{\prime}=f\left(t_{n}, y_{n}\right)
$$

- Step in a straight line with that slope:

$$
y_{n+1}=y_{n}+h \cdot y_{n}^{\prime}
$$

This can be rewritten as into a recurrence relationship (note that y_{0} should be a given):

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

This directly gives a new value y_{n+1} at the new time $t_{n+1}=t_{n}+h$
Note: at every step we know value y_{n}, time t_{n}, time step h, and get the slope by evaluting f

Forward Euler Examples

First Example

$$
y^{\prime}(t)=2 y(t) \quad y\left(t_{0}\right)=y_{0}=3 \quad t_{0}=0
$$

The analytical solution for this is $y(t)=3 e^{2 t}$

FE with step size $h=1$ until $t=3$

$$
\begin{aligned}
& y_{n+1}=y_{n}+(1)\left(2 y_{n}\right)=3 y_{n} \\
& \qquad \begin{array}{c|cc|c}
n & t_{n} & y_{n} & y\left(t_{n}\right) \\
\hline 0 & 0 & 3 & 3 \\
1 & 1 & 9 & 22.2 \\
2 & 2 & 27 & 163.8 \\
3 & 3 & 81 & 1210
\end{array}
\end{aligned}
$$

FE with step size $h=\frac{1}{2}$ until $t=3$

$$
\begin{array}{r|cc|c}
y_{n+1}=y_{n}+\left(\frac{1}{2}\right)\left(2 y_{n}\right)=2 y_{n} \\
n & t_{n} & y_{n} & y\left(t_{n}\right) \\
\hline 0 & 0 & 3 & 3 \\
1 & 0.5 & 6 & 8.15 \\
2 & 1 & 12 & 22.2 \\
3 & 1.5 & 24 & 60.3 \\
4 & 2 & 48 & 163.8 \\
5 & 2.5 & 96 & 445 \\
6 & 3 & 192 & 1210
\end{array}
$$

The approximate values drift away from actual values quickly and smaller step size FE has a smaller error.
Remark: When implementing FE in code leave f as a black box for generality

Remark: $y\left(t_{n}\right)$ is the exact value at time t_{n} while y_{n} is the approximate/discrete data at step n (at step n it is time t_{n})

$$
\begin{aligned}
f \text { evaluted on numerical data: } & f\left(t_{n}, y_{n}\right) \\
f \text { evaluted on exact value of } y: & f\left(t_{n}, y\left(t_{n}\right)\right)
\end{aligned}
$$

Second Example:

$$
x^{\prime}(t)=-y(t) \quad y^{\prime}(t)=x(t) \quad x\left(t_{0}\right)=2 \quad y\left(t_{0}\right)=0 \quad t_{0}=2
$$

To solve numerically with $h=2$ apply FE $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)$ to the vector form of this IVP

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
-y(t) \\
x(t)
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{c}
x_{n} \\
y_{n}
\end{array}\right]+2\left[\begin{array}{c}
-y_{n} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
x_{n}-2 y_{n} \\
y_{n}+2 x_{n}
\end{array}\right]
$$

Solving until $t=8$ we can generate the table:

n	t_{n}	x_{n}	y_{n}
0	2	2	0
1	4	2	4
2	6	-6	8
3	8	-22	-4

Plotting this numerical solution we notice that FE exhibits large error/drift (blue circle is correct)

Deriving Forward Euler

Recall how the Taylor series for f at some point a is defined as:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots
$$

Unrelated: function f is equal to its Taylor series if it is analytic (most functions are)
There are two ways we can arrive at Forward Euler:

- Finite Differences View: approximate the deriviative y^{\prime} using a finite difference

$$
y^{\prime}\left(t_{n}\right)=f(t, y(t)) \quad \rightarrow \quad y^{\prime}\left(t_{n}\right) \approx \frac{y_{n+1}-y_{n}}{t_{n+1}-t_{n}}
$$

Since we defined $h=t_{n+1}-t_{n}$ we have

$$
y^{\prime}\left(t_{n}\right) \approx \frac{y_{n+1}-y_{n}}{h}=f\left(t_{n}, y_{n}\right)
$$

Rearranging this we get FE $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)$

- Taylor Series View: Taylor series for y at t_{n} is (just assume y is analytic)

$$
y(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(t_{n}\right)}{n!}\left(x-t_{n}\right)^{n}
$$

To get $y\left(t_{n+1}\right)$ we just sub $x=t_{n+1}$ and since $h=t_{n+1}-t_{n}$ we get

$$
y\left(t_{n+1}\right)=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(t_{n}\right)}{n!}\left(t_{n+1}-t_{n}\right)^{n}=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(t_{n}\right)}{n!} h^{n}
$$

assume that terms of order h^{2} or higher will be small as $h \rightarrow 0$ and drop them to get FE

$$
y\left(t_{n+1}\right) \approx y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)=y\left(t_{n}\right)+h f\left(t_{n}, y_{n}\right)
$$

Error of Forward Euler

- Local Truncation Error (LTE): the error incurred between step n and $n+1$:

$$
\left|y_{n+1}-y\left(t_{n+1}\right)\right| \quad\left(\text { assuming exact data at time } t_{n}\right)
$$

- Absolute/Global Error: is the total error incurred to get to step n :

$$
\left|y_{n}-y\left(t_{n}\right)\right|
$$

For Forward Euler assume y_{n} is exact then turning $y\left(t_{n+1}\right)$ into a Taylor series we get the LTE:

$$
y_{n+1}-y\left(t_{n+1}\right)=-\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right)=O\left(h^{2}\right)
$$

as h decreases, LTE decreases quadratically. (We will find global error later)
Note: $\operatorname{Big} O$ in this case is used to show the dominant term is the slowest decreasing one as $h \rightarrow 0$ (typically the lowest power of h)

Example: as $x \rightarrow 0$ for $g(x)=5 x^{3}-9 x^{4}+2 x^{9}$ then

$$
g(x)=O\left(x^{3}\right) \quad g(x)=5 x^{3}+O\left(x^{4}\right) \quad g(x) \neq O\left(x^{9}\right)
$$

Higher Order Time Stepping Schemes

Derivative Approximation

Consider the Taylor expansion for $y\left(t_{n+1}\right)$ at t_{n} then rearrange

$$
y\left(t_{n+1}\right)=y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)+O\left(h^{2}\right) \quad \rightarrow \quad y^{\prime}\left(t_{n}\right)=\frac{y\left(t_{n+1}\right)-y\left(t_{n}\right)}{h}+O(h)
$$

Thus we state that the derivative approximation has error $O(h)$

More Accurate Time-Stepping

If we add another term from the Taylor series we could $O\left(h^{3}\right)$ error:

$$
y\left(t_{n+1}\right)=\underbrace{\underbrace{y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)}_{\text {FE: } O\left(h^{2}\right) \text { error }}+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)}_{O\left(h^{3}\right) \text { error }}+\frac{h^{3}}{3!} y^{\prime \prime \prime}\left(t_{n}\right)+\cdots
$$

Notice that we don't know what $y^{\prime \prime}$ is so we will just approximate it using the finite difference method:

$$
y^{\prime \prime}\left(t_{n}\right)=\frac{y^{\prime}\left(t_{n+1}\right)-y^{\prime}\left(t_{n}\right)}{h}+O(h)=\frac{f\left(t_{n+1}, y\left(t_{n+1}\right)\right)-f\left(t_{n}, y\left(t_{n}\right)\right)}{h}+O(h)
$$

Trapezoidal Rule (Crank-Nicolson)

Subbing $y^{\prime}(t)=f(t, y(t))$ and the finite difference for $y^{\prime \prime}$ into the Taylor series we get

$$
y\left(t_{n+1}\right)=y\left(t_{n}\right)+\frac{h}{2}\left[f\left(t_{n}, y\left(t_{n}\right)\right)+f\left(t_{n+1}, y\left(t_{n+1}\right)\right)\right]+O\left(h^{3}\right)
$$

replacing the exact values with approximations we get

$$
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right]+O\left(h^{3}\right)
$$

The intuition is the we are averging the slopes of y at t_{n} and t_{n+1} to get the next step.

Explicit vs Implicit Schemes

Explicit: only y_{n} or earlier data appears on RHS

- Simpler and fast to compute per step
- Less stable so usually want to use smaller timesteps to avoid compounding errors
- Forward Euler is an explicit scheme and can be evaluted directly

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

Implicit: unknown y_{n+1} appears on both sides

- Often more complex and expensive to solve per step
- More stable so can safely use larger timesteps
- Trapezoidal is an implicit scheme so to solve for y_{n+1} we need to rearrange for each different f

$$
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right]
$$

Computation tradeoff between few expensive large steps (implicit) vs many cheap small steps (explicit).

Modified/Improved Euler

We use a Forward Euler-like step as the basis for the Trapezoidal-like step

$$
\begin{gathered}
y_{n+1}^{*}=y_{n}+h f\left(t_{n}, y_{n}\right) \\
y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}^{*}\right)\right)
\end{gathered}
$$

This allows us to turn the Trapezoidal method into an explicit scheme with the same LTE of $O\left(h^{3}\right)$

Improved Euler Example

$$
x^{\prime}(t)=-y(t) \quad y^{\prime}(t)=x(t) \quad x\left(t_{0}\right)=2 \quad y\left(t_{0}\right)=0 \quad t_{0}=0
$$

Generate our improved Euler steps with $h=2$:

- FE step:

$$
\left[\begin{array}{l}
x_{n+1}^{*} \\
y_{n+1}^{*}
\end{array}\right]=\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]+2\left[\begin{array}{c}
-y_{n} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
x_{n}-2 y_{n} \\
y_{n}+2 x_{n}
\end{array}\right]
$$

- Trapzoidal step

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]+\frac{2}{2}\left[\begin{array}{c}
-y_{n}-y_{n+1}^{*} \\
x_{n}+x_{n+1}^{*}
\end{array}\right]=\left[\begin{array}{l}
x_{n}-y_{n}-y_{n+1}^{*} \\
y_{n}+x_{n}+x_{n+1}^{*}
\end{array}\right]
$$

Now we apply improved Euler to the IVP

- Step 1

$$
\left[\begin{array}{l}
x_{1}^{*} \\
y_{1}^{*}
\end{array}\right]=\left[\begin{array}{l}
x_{0}-2 y_{0} \\
y_{0}-2 x_{0}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \rightarrow\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
x_{0}-y_{0}-y_{1}^{*} \\
y_{0}+x_{0}+x_{1}^{*}
\end{array}\right]=\left[\begin{array}{l}
2-0-4 \\
0+2+2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4
\end{array}\right]
$$

- Step 2

$$
\left[\begin{array}{l}
x_{2}^{*} \\
y_{2}^{*}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-2 y_{1} \\
y_{1}-2 x_{1}
\end{array}\right]=\left[\begin{array}{c}
-10 \\
0
\end{array}\right] \quad \rightarrow\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-y_{1}-y_{2}^{*} \\
y_{1}+x_{1}+x_{2}^{*}
\end{array}\right]=\left[\begin{array}{c}
-2-4+0 \\
4-2-10
\end{array}\right]=\left[\begin{array}{l}
-6 \\
-8
\end{array}\right]
$$

Now we have the table

n	t_{n}	x_{n}	y_{n}	x_{n}^{*}	y_{n}^{*}
0	0	2	0		
1	2	-2	4	2	4
2	4	-6	-8	-10	0

Time Integration Methods So Far

exact values should make a circle

- Forward Euler (LTE $O\left(h^{2}\right)$): Use slope at start point
- Trapezoidal (LTE $O\left(h^{3}\right)$): Use average of slope at start and end of step
- Improved Euler (LTE $O\left(h^{3}\right)$): Use average of slope at start and approximate end

More Time Stepping Schemes

Backwords Euler Method

Similar to forward Euler, but implicit (same truncation error of $O\left(h^{2}\right)$)

- Forward Euler: uses the slope from the start of the step

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

- Backwards Euler: uses the slope from the end of step

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right)
$$

Explicit Runge Kutta Schemes

Runge Kutta is a family of explicit schemes written in a specific form

- Improved Euler is rewritten as

$$
y_{n+1}=y_{n}+\frac{k_{1}}{2}+\frac{k_{2}}{2} \quad k_{1}=h f\left(t_{n}, y_{n}\right) \quad k_{2}=h f\left(t_{n}+h, y_{n}+k_{1}\right)
$$

- Midpiont Method: use the slope found at the approximate middle of the step (LTE $O\left(h^{3}\right)$)

$$
y_{n+1}=y_{n}+k_{2} \quad k_{1}=h f\left(t_{n}, y_{n}\right) \quad k_{2}=h f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right)
$$

There are many Runge Kutta schemes for higher error orders $O\left(h^{\alpha}\right)$ for $\alpha=3,4,5,6, \ldots$

4th Order Runge Kutta (RK4)

The Classical Runge-Kutta or RK4 with an LTE of $O\left(h^{5}\right)$

$$
\begin{array}{lcc}
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{array} \quad \begin{array}{cc}
k_{1}=h \cdot f\left(t_{n}, y_{n}\right) & k_{2}=h \cdot f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
k_{3}=h \cdot f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) & k_{4}=h \cdot f\left(t_{n}+h, y_{n}+k_{3}\right)
\end{array}
$$

Global Error

We previously only looked at the error for a single step but error will accumulate with each step (drift).
Global error is the total error accumulated at the final time $t_{\text {final }}$
For constant steps h we multiply our LTE with the number of steps to get

$$
\# \text { steps }=\frac{t_{\text {final }}-t_{0}}{h}=O\left(h^{-1}\right) \quad \rightarrow \quad \text { Global error } \leq \text { Local Error } \cdot O\left(h^{-1}\right)
$$

In other words global error is one degree lower than the LTE.

Examples:

- Forward Euler: $O\left(h^{2}\right) \cdot O\left(h^{-1}\right)=O(h)$ or 1st order accurate
- Improved Euler: $O\left(h^{3}\right) \cdot O\left(h^{-1}\right)=O\left(h^{2}\right)$ or 2nd order accurate
- RK4: $O\left(h^{5}\right) \cdot O\left(h^{-1}\right)=O\left(h^{4}\right)$ or 4th order accurate

Multistep Schemes

So far we have only seen single-step scemes which only use info from current time t_{n} (and forward) to solve for y_{n+1}. Multi-step methods also use information from earlier timesteps t_{n-1}, t_{n-2}, etc..

Implicit Multistep: Backwards Differentiation Formula (BDF) Methods

Generalize backwards Euler into the family of methods BDF1, BDF2, BDF3, etc where the number indicates order of global error.

- BDF1 is just backwards euler and is a single step scheme

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right)
$$

- BDF2 uses current and previous step data

$$
y_{n+1}=\frac{4}{3} y_{n}-\frac{1}{3} y_{n-1}+\frac{2}{3} h f\left(t_{n+1}, y_{n+1}\right)
$$

- In general, BDF schemes are written as

$$
\sum_{k=-s+1}^{1} a_{k} y_{n+k}=h f\left(t_{n+1}, y_{n+1}\right)
$$

where a_{k} are some coefficients
Deriving BDF coefficients via Interpolation requires 3 steps:

1. Fit $p(t)$ using Lagrange polynomials to unknown point $\left(t_{n+1}, y_{n+1}\right)$ and one or more earlier points
2. Find $p^{\prime}(t)$ by differentiating
3. Require end-of-step slope to match: $p^{\prime}\left(t_{n+1}\right)=f\left(t_{n+1}, y_{n+1}\right)$ then rearrange for y_{n+1}

Example: Deriving BDF2 via Interpolation:

1. Fit Lagrange polynomial to time steps: t_{n+1}, t_{n}, t_{n-1} and recall that $h=t_{n+1}-t_{n}$

$$
\begin{aligned}
p(t) & =y_{n+1} \frac{\left(t-t_{n}\right)\left(t-t_{n-1}\right)}{\left(t_{n+1}-t_{n}\right)\left(t_{n+1}-t_{n-1}\right)}+y_{n} \frac{\left(t-t_{n+1}\right)\left(t-t_{n-1}\right)}{\left(t_{n}-t_{n+1}\right)\left(t_{n}-t_{n-1}\right)}+y_{n-1} \frac{\left(t-t_{n+1}\right)\left(t-t_{n}\right)}{\left(t_{n-1}-t_{n+1}\right)\left(t_{n-1}-t_{n}\right)} \\
& =\frac{y_{n+1}}{2 h^{2}}\left(t-t_{n}\right)\left(t-t_{n-1}\right)+\frac{y_{n}}{-h^{2}}\left(t-t_{n+1}\right)\left(t-t_{n-1}\right)+\frac{y_{n-1}}{2 h^{2}}\left(t-t_{n+1}\right)\left(t-t_{n}\right)
\end{aligned}
$$

2. Determine $p^{\prime}(t)$

$$
p^{\prime}(t)=\frac{y_{n+1}}{2 h^{2}}\left(2 t-t_{n}-t_{n-1}\right)+\frac{y_{n}}{-h^{2}}\left(2 t-t_{n+1}-t_{n-1}\right)+\frac{y_{n-1}}{2 h^{2}}\left(2 t-t_{n+1}-t_{n}\right)
$$

3. Require $p^{\prime}\left(t_{n+1}\right)=f\left(t_{n+1}, y_{n+1}\right)$ then rearrange for y_{n+1}

$$
\begin{aligned}
p^{\prime}\left(t_{n+1}\right)= & \frac{y_{n+1}}{2 h^{2}}\left(2 t_{n+1}-t_{n}-t_{n-1}\right)+\frac{y_{n}}{-h^{2}}\left(2 t_{n+1}-t_{n+1}-t_{n-1}\right)+\frac{y_{n-1}}{2 h^{2}}\left(2 t_{n+1}-t_{n+1}-t_{n}\right) \\
= & \frac{y_{n+1}}{2 h^{2}}(h+2 h)+\frac{y_{n}}{-h^{2}}(2 h)+\frac{y_{n-1}}{2 h^{2}}(h) \\
= & \frac{3 y_{n+1}}{2 h}+\frac{2 y_{n}}{-h}+\frac{y_{n-1}}{2 h}=f\left(t_{n+1}, y_{n+1}\right) \\
& y_{n+1}=\frac{4}{3} y_{n}-\frac{1}{3} y_{n-1}+\frac{2}{3} h f\left(t_{n+1}, y_{n+1}\right)
\end{aligned}
$$

Explicit Multistep: Adams-Bashforth

2nd order Adams-Bashforth:

$$
y_{n+1}=y_{n}+\frac{3}{2} h f\left(t_{n}, y_{n}\right)-\frac{1}{2} h f\left(t_{n-1}, y_{n-1}\right)
$$

We know all the data at t_{n} and t_{n-1} so we can directly evaluate to get y_{n+1}, has LTE of $O\left(h^{3}\right)$

Higher Order ODEs

We can convert a higher ODE to a lower order using

$$
y^{(n)}(t)=f\left(t, y(t), y^{\prime}(t), \ldots, y^{(n-1)}(t)\right)
$$

This allows us to convert higher order ODEs into a system of first order ODEs.
Method: for the term $y^{(n)}$ with the largest degree, if $n>1$ then introduce new variables

$$
y_{i}=y^{(i-1)} \quad \text { for } i=1, \ldots, n
$$

substituting these new variables into the original ODE leads to:

- one first order equation for each original equation
- one more more addition equations relating the new variables

Example 1:

$$
y^{\prime \prime}(t)=t y(t) \quad \text { with } y(1)=1 \text { and } y^{\prime}(t)=2
$$

- Introduce variables $y_{i}=y^{(i-1)}$ for $i=1,2$

$$
y_{1}(t)=y(t) \quad y_{2}(t)=y^{\prime}(t)
$$

- Plug into ODE to get us a system of 1st order ODEs

$$
\begin{aligned}
y_{2}^{\prime}(t) & =t y_{1}(t) \\
y_{1}^{\prime}(t) & =y_{2}(t)
\end{aligned}
$$

with initial conditions $y_{1}(t)=1$ and $y_{2}(1)=2$

Example 2:

$$
y^{(4)}(t)-3 y^{\prime \prime \prime}(t)+\sin (t) y^{\prime \prime}(t)-7 t y(t)=e^{t}
$$

- Introduce variables $y_{i}=y^{(i-1)}$ for $i=1, \ldots, 4$

$$
y_{1}(t)=y(t) \quad y_{2}(t)=y^{\prime}(t) \quad y_{3}(t)=y^{\prime \prime}(t) \quad y_{4}(t)=y^{\prime \prime \prime}(t)
$$

- Plug into ODE to get one first order equation:

$$
y_{4}^{\prime}(t)=3 y_{4}(t)-\sin (t) y_{3}(t)+7 t y_{1}(t)+e^{t}
$$

- Add relationships between the new variables to the system

$$
y_{3}^{\prime}(t)=y_{4}(t) \quad y_{2}^{\prime}(t)=y_{3}(t) \quad y_{1}^{\prime}(t)=y_{2}(t)
$$

This gives us a system of 4 first order linear ODEs

Stability

Errors are generally $O\left(h^{p}\right)$ for some value of p so our schemes are less accurate for large values of h. Stability is the measure of how much an error in the intial conditions will change the results:

$$
y^{\prime}(t)=f(t, y(t)) \quad y(0)=y_{0}+\epsilon_{0}
$$

If the intial error ϵ_{0} grows exponentially for many steps $n \rightarrow \infty$ our scheme is unstable.
To examine the stability of time-stepping schemes we will use

$$
y^{\prime}(t)=-\lambda y(t) \quad y(0)=y_{0} \quad \text { where } \lambda>0
$$

as our test equation becuase of its simplicity. Then we have 3 steps:

1. Apply the time stepping scheme to the test equation
2. Find the closed form of its numerical solution and error behaviour
3. Find the conditions on the timestep h that ensure stability (error approaches zero)

Explicit Scheme Stability: Forward Euler

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

Applying FE to our test equation $y^{\prime}(t)=-\lambda y(t)$ and $y(0)=y_{0}$ with $\lambda>0$

$$
y_{n+1}=y_{n}+h\left(-\lambda y_{n}\right)=y_{n}(1-h \lambda)
$$

- Closed form for numerical solution is $y_{n}=y_{0}(1-h \lambda)^{n}$ for n timesteps
- True solution is $y(t)=y_{0} e^{-\lambda t}$ which decays to zero

Numerical solution goes to zero only when

$$
|1-h \lambda|<1 \quad \rightarrow \quad-1<1-h \lambda<1
$$

- LHS says $-1<1-h \lambda$ which becomes $h<\frac{2}{\lambda}$
- RHS says $1-h \lambda<1$ which becomes $-h \lambda<0$ or $h>0$ (this always holds)

Hence the numerical solution decays to 0 (like the true solution) when $h<\frac{2}{\lambda}$ otherwise it will blow up. If we perturb the initial conditions with error ϵ_{0} then:

$$
y_{0}^{(p)}=y_{0}+\epsilon_{0} \quad \rightarrow \quad y_{n}^{(p)}=\left(y_{0}+\epsilon_{0}\right)(1-h \lambda)^{n}
$$

Taking the difference to error $\epsilon_{n}=y_{n}^{(p)}-y_{n}$ becomes $\epsilon_{n}=\epsilon_{0}(1-h \lambda)^{n}$. We conclude the error has the same behaviour for this test equation (decays to 0 for $h<\frac{2}{\lambda}$)
We say Forward Euler is Conditionally Stable (stable only when h satisfies the stability condiiton)

Implicit Scheme Stability: Backword Euler

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right)
$$

Applying BE to our test equation $y^{\prime}(t)=-\lambda y(t)$ and $y(0)=y_{0}$ with $\lambda>0$

$$
y_{n+1}=y_{n}+h\left(-\lambda y_{n+1}\right) \quad \rightarrow \quad y_{n+1}=\frac{y_{n}}{(1+h \lambda)} \quad \rightarrow \quad y_{n}=\frac{y_{0}}{(1+h \lambda)^{n}} \text { (closed form) }
$$

Since $h>0$ and $\lambda>0$ the value decreases in magnitude as $n \rightarrow \infty$ for any timestep h
By the same logic as for FE the error/perturbation follows the same form

$$
\epsilon_{n}=\frac{\epsilon_{0}}{(1+h \lambda)^{n}}
$$

So BE is Unconditionally Stable (stable for any $h>0$)

- Generally implicit schemes are more stable than explicit schemes at the cost of being potentially more expensive to solve
- Stabiliy does not imply accuracy, if we take a very large timestep we will still get large errors

Explicit Scheme Stability: Improved Euler

$$
\begin{aligned}
& y_{n+1}^{*}=y_{n}+h f\left(t_{n}, y_{n}\right) \\
& y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}^{*}\right)\right)
\end{aligned}
$$

Applying IE to our test equation $y^{\prime}(t)=-\lambda y(t)$ and $y(0)=y_{0}$ with $\lambda>0$

$$
\begin{aligned}
y_{n+1}^{*} & =y_{n}+h\left(-\lambda y_{n}\right) \\
y_{n+1} & =y_{n}+\frac{h}{2}\left(-\lambda y_{n}-\lambda y_{n+1}^{*}\right) \\
& =y_{n}-h \lambda y_{n}+\frac{h^{2} \lambda^{2}}{2} y_{n} \\
& =y_{n}\left(1-h \lambda+\frac{h^{2} \lambda^{2}}{2}\right)
\end{aligned}
$$

Closed form and error:

$$
y_{n}=y_{0}\left(1-h \lambda+\frac{h^{2} \lambda^{2}}{2}\right)^{n} \quad \rightarrow \quad \epsilon_{n}=\epsilon_{0}\left(1-h \lambda+\frac{h^{2} \lambda^{2}}{2}\right)^{n}
$$

Then IE is stable when

$$
\left|1-h \lambda+\frac{h^{2} \lambda^{2}}{2}\right|<1
$$

after some algebra this yields $h<\frac{2}{h}$ for stability which is the same as FE.

Test Equation Stability Visualized

Graphs of the numerical approximation of the test equation using Forward Euler and Backword Euler.

Forward Euler $h>2 / \lambda$ (unstable)

Forward Euler $h<2 / \lambda$ (stable but inaccurate)

Forward Euler $h=2 / \lambda$ (borderline stable)

Forward Euler $h \ll 2 / \lambda$ (stable and accruate)

Backward Euler $h>2 / \lambda$ (stable)

- Stability: how the numerical algorithm will react to small errors
- Truncation Error: how the accuracy of our numerical solution scales with time step h (in absence of stability issues)

Both factors need to be considered to get a useful solution.

Stability in General (Beyond Test Equation)

There is a method for extrapolate the results of the test equation to other DEs however it is outside the scope of this course.

- For non-linear problems we transform it into a linear equation locally and test stability there (may need to do multiple times)
- for system of ODEs stability relates to the eigenvalues of the Jacobian matrix

Local Truncation Error

Previously we got truncation error as a byproduct of the derivation of the scheme (e.g. via Taylor series)
In order to find LTE for methods we don't know the derivation for recall that:

$$
\mathrm{LTE}=y\left(t_{n+1}\right)-y_{n+1}
$$

Assuming exact RHS data this is the error from taking one step. For time-stepping scheme $y_{n+1}=$ RHS:

1. Replace approximations on RHS with exact versions
2. Taylor expand all RHS quantities about time t_{n}
3. Taylor expand the exact soltuion $y\left(t_{n+1}\right)$ to compare against
4. Compute difference $y\left(t_{n+1}\right)-y_{n+1}$. Lowest degree non-canceling power of h gives the LTE.

Taylor Expansion:

- General Taylor series for y at time t_{n} :

$$
y(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(t_{n}\right)}{n!}\left(x-t_{n}\right)^{n}
$$

- Since $h=t_{n+1}-t_{n}$ if we use the above to estimate the value of y at t_{n+1} or at t_{n-1}

$$
y\left(t_{n+1}\right)=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(t_{n}\right)}{n!} h^{n} \quad y\left(t_{n-1}\right)=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(t_{n}\right)}{n!}(-h)^{n}
$$

- Remark using Taylor series created at t_{n} to estimate t_{n} will just get $y\left(t_{n}\right)=y\left(t_{n}\right)$

Local Truncation Error of Trapezoidol

$$
y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right)
$$

1. Replace RHS quantities with exact counterparts

$$
y_{n+1}=y\left(t_{n}\right)+\frac{h}{2}\left[y^{\prime}\left(t_{n}\right)+y^{\prime}\left(t_{n+1}\right)\right]
$$

2. Taylor expand the RHS quantities about time t_{n} (using $h=t_{n+1}-t_{n}$)

$$
y^{\prime}\left(t_{n+1}\right)=y^{\prime}\left(t_{n}\right)+h y^{\prime \prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{3}\right)
$$

Then

$$
\begin{aligned}
y_{n+1} & =y\left(t_{n}\right)+\frac{h}{2}\left[y^{\prime}\left(t_{n}\right)+y^{\prime}\left(t_{n}\right)+h y^{\prime \prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{3}\right)\right] \\
& =y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+\frac{h^{3}}{4} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{4}\right)
\end{aligned}
$$

3. Write down the exact Taylor series for $y\left(t_{n+1}\right)$

$$
y\left(t_{n+1}\right)=y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+\frac{h^{3}}{6} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{4}\right)
$$

4. Find the difference:

$$
\begin{aligned}
y\left(t_{n+1}\right)-y_{n+1} & =\frac{h^{3}}{6} y^{\prime \prime \prime}\left(t_{n}\right)-\frac{h^{3}}{4} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{4}\right) \\
& =-\frac{1}{12} h^{3} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{4}\right) \\
& =O\left(h^{3}\right)
\end{aligned}
$$

Thus the local truncation error of Trapezoidol is $O\left(h^{3}\right)$

Local Truncation Error of BDF2

$$
y_{n+1}=\frac{4}{3} y_{n}-\frac{1}{3} y_{n-1}+\frac{2 h}{3} f\left(t_{n+1}, y_{n+1}\right)
$$

- Replace RHS data with exact versions

$$
y_{n+1}=\frac{4}{3} y\left(t_{n}\right)-\frac{1}{3} y\left(t_{n-1}\right)+\frac{2 h}{3} y^{\prime}\left(t_{n+1}\right)
$$

- Taylor expand RHS expressions (using $-h=t_{n-1}-t_{n}$)

$$
\begin{aligned}
& y\left(t_{n-1}\right)=y\left(t_{n}\right)-h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)-\frac{h^{3}}{6} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{4}\right) \\
& y^{\prime}\left(t_{n+1}\right)=y^{\prime}\left(t_{n}\right)+h y^{\prime \prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{3}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
y_{n+1}= & \frac{4}{3} y\left(t_{n}\right)-\frac{1}{3}\left(y\left(t_{n}\right)-h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)-\frac{h^{3}}{6} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{4}\right)\right) \\
& +\frac{2 h}{3}\left(y^{\prime}\left(t_{n}\right)+h y^{\prime \prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{3}\right)\right) \\
= & y\left(t_{n}\right)+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+\frac{7 h^{3}}{18} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{4}\right)
\end{aligned}
$$

- Find difference between above and the true Taylor series:

$$
\begin{aligned}
y\left(t_{n+1}\right)-y_{n+1} & =\left[\frac{1}{6}-\frac{7}{18}\right] y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{3}\right) \\
& =-\frac{2}{9} h^{3} y^{\prime \prime \prime}\left(t_{n}\right)+O\left(h^{4}\right) \\
& =O\left(h^{3}\right)
\end{aligned}
$$

Adaptive Time-Stepping

So far we had a constant h given to us. If given the choice a smaller h yields smaller error but:

- It will have a higher computational cost
- Too small of a time step will cause no extra benefit because of floating point errors

To minimize cost we want to the choose largest h with error still within a desired tolerance
error < tolerance

To do this with a fixed h is difficult because the rate of change of different parts can vary extremely:

Instead we can adapt the time step to minimize our effort while still getting the tolerance we want.

Basic Algorithm

The goal is to control h to always satisfy:

$$
\text { error }<\text { tolerance }
$$

however knowing the exact error is the same as knowing the solution.
Instead we use two different time-stepping schemes together then compare their results to estimate error and adjust h accordingly:

1. Compute the approximate solutions for one time step with 2 schemes of different orders

$$
\begin{gathered}
y_{n+1}^{A}=\text { Method A } \quad \text { with } O\left(h^{p}\right) \\
y_{n+1}^{B}=\text { Method B } \quad \text { with } O\left(h^{p+1}\right)
\end{gathered}
$$

2. Approximate the error by taking their difference

$$
e r r=\left|y_{n+1}^{A}-y_{n+1}^{B}\right|
$$

3. While error $>$ tolerance: set $h:=h / 2$ then go back to step 1
4. Estimate error coefficient c and predict a good next step size $h_{\text {new }}$

$$
c \approx \frac{\left|y_{n+1}^{A}-y_{n+1}^{B}\right|}{\left(h_{o l d}^{p}\right)}
$$

where $h_{\text {old }}$ is the most recent timestep size. Then we use c to estimate the next time step error:

$$
\text { err }_{n e x t}=\left|y_{n+2}^{A}-y\left(t_{n+2}\right)\right| \approx c\left(h_{\text {new }}^{p}\right)=\frac{\left|y_{n+1}^{A}-y_{n+1}^{B}\right|}{\left(h_{\text {old }}^{p}\right)}\left(h_{\text {new }}^{p}\right)=\left|y_{n+1}^{A}-y_{n+1}^{B}\right|\left(\frac{h_{\text {new }}}{h_{\text {old }}}\right)^{p}
$$

Then set $e r r_{n e x t}$ to our tolerance tol and solve for $h_{\text {new }}$

$$
h_{\text {new }}=h_{\text {old }}\left(\frac{\text { tol }}{\left|y_{n+1}^{A}-y_{n+1}^{B}\right|}\right)^{1 / p}
$$

To be safe scale tol by some factor $\ell(\mathrm{Ex}: \ell=1 / 2$ or $\ell=3 / 4)$
5. Repeat from step 1 until end time is reached

Step 3 will shrink our step size while step 4 is allows our step size to grow larger when it is safe.
Justification: observe that for some value of p and c (notice that c is the error coefficient)

$$
y_{n+1}^{A}=y\left(t_{n+1}\right)+c h^{p}+O\left(h^{p+1}\right) \quad y_{n+1}^{B}=y\left(t_{n+1}\right)+O\left(h^{p+1}\right)
$$

- Method A's true error is:

$$
\left|y_{n+1}^{A}-y\left(t_{n+1}\right)\right|=c h^{p}+O\left(h^{p+1}\right)
$$

- Method A's estimated error is:

$$
\left|y_{n+1}^{A}-y_{n+1}^{B}\right|=c h^{p}+O\left(h^{p+1}\right)
$$

Since the dominant component of the error matches we can say our estimate is a decent approximation.

Usage of Adaptive Time-Stepping

Matlab's ODE45 and SciPy's RK45 uses the Dormand-Prince scheme which uses the 4th and 5th order Runge-Kutta schemes:

$$
\begin{aligned}
k_{1} & =h f\left(t_{n}, y_{n}\right) \\
k_{2} & =h f\left(t_{n}+\frac{h}{4}, y_{n}+\frac{k_{1}}{4}\right) \\
k_{3} & =h f\left(t_{n}+\frac{3 h}{8}, y_{n}+\frac{3 k_{1}}{32}+\frac{9 k_{2}}{32}\right) \\
k_{4} & =h f\left(t_{n}+\frac{12 h}{13}, y_{n}+\frac{1932 k_{1}}{2197}-\frac{7200 k_{2}}{2197}+\frac{7296 k_{3}}{2197}\right) \\
k_{5} & =h f\left(t_{n}+h, y_{n}+\frac{439 k_{1}}{216}-8 k_{2}+\frac{3680 k_{3}}{513}-\frac{845 k_{4}}{4104}\right) \\
k_{6} & =h f\left(t_{n}+\frac{h}{2}, y_{n}-\frac{8 k_{1}}{27}+2 k_{2}-\frac{3544 k_{3}}{2565}+\frac{1859 k_{4}}{4104}-\frac{11 k_{5}}{40}\right) \\
y_{n+1}^{*} & =y_{n}+\frac{25 k_{1}}{216}+\frac{1408 k_{3}}{2565}+\frac{2197 k_{4}}{4104}-\frac{k_{5}}{5} \text { with error } O\left(h^{4}\right) \\
y_{n+1} & =y_{n}+\frac{16 k_{1}}{135}+\frac{6656 k_{3}}{12825}+\frac{28561 k_{4}}{56430}-\frac{9 k_{5}}{50}+\frac{2 k_{6}}{55} \text { with error } O\left(h^{5}\right)
\end{aligned}
$$

This is more efficient because we use k_{1} to k_{5} for both both RK4 and RK5.

Stiff Problems

Stiff problems cause some issues:

- Interesting aspect of the solution changes slowly so we want large time steps
- Stability condition of the (usually explicit) stepping method forces us to use small time steps This arises when some aspects of the problem evolve at different time scales:

We only care about the trend in red but our stability condition forces us to use small steps.

1. Apply ODE45 (with adaptive time steps) to a stiff problem
2. Estimated truncation error is small so ODE45 tries to take larger step
3. Stability condition is violated which creates large errors
4. ODE45 cuts timestep back to reduce this error

Stuck taking very small steps. Example: Mathworks Stiff Differential Equations

ODE45 - Explicit solver

ODE23s - A "stiff" solver (implicit)

- ODE45 handles this poorly as it bounces around 1 in the zoom-in view.
- ODE23s is the stiff solver and is able to deal with it well

In general implicit schemes are good since they have weaker or no stability restrictions
Matlab has a a few stiff solvers:

- ODE23s uses 2nd and 3rd order implicit schemes
- ODE15s uses 1st and 5th order implicit schemes

The Fourier Transform

The Fourier Transform is applied to continuous functions or discrete data to gain useful insights:

1. Transform some function/data into a form that reveals the frequencies of information
2. Process or analyze in this frequency domain form where some tasks are easier
3. Transform back

This process can be applied to a variety signal processing applications (filtering, denoising, autotune, compression, etc):

The goal of Fourier analysis is to convert time/space-dependent data into Frequency domain (infinite sum of increasingly high frequency sin or cos)

$$
\begin{gathered}
\text { Time domain : } f(t) \quad \text { Space domain : } f(x) \\
f(t)=a_{0}+a_{1} \cos (q t)+b_{1} \sin (q t)+a_{2} \cos (2 q t)+b_{2} \sin (2 q t)+\cdots \quad \text { where } q=\frac{2 \pi}{T}
\end{gathered}
$$

now the coefficients a_{i} and b_{i} determine the function. When finding these coefficients we have two views:

- A weird non-polynomial interpolation problem (fitting to given function/data)
- A series expansion of a function as a specific kind of infinite sum (e.g. Taylor series)

Continuous Fourier Series

The goal is to represent any $f(t)$ as an infinite sum of trig functions:

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{2 \pi k t}{T}\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{2 \pi k t}{T}\right)
$$

a_{k} and b_{k} indicate information/amplitude for each sinusoid of period $\frac{T}{k}$ or frequency $\frac{k}{T}$.
If we assume that the range of t is $t \in[0,2 \pi]$ then the domain length is $T=2 \pi$ and we get:

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k t)+\sum_{k=1}^{\infty} b_{k} \sin (k t)
$$

This can be thought of as convertion to a list of numbers a_{k} and b_{k}.
Visualization: https://bl.ocks.org/jinroh/7524988
Converting a sawtooth wave into a truncated (finite) Fourier series lets us understand why ringing artifacts occur during image compression:

Ringing artifact during image compression
Because of discontinuity at edges the Fourier series overshoots at the top and undershoots at the bottom.

Orthogonality Relations

$$
\begin{gathered}
\int_{0}^{2 \pi} \cos (k t) \sin (j t) d t=0 \quad \forall k, j \\
\int_{0}^{2 \pi} \cos (k t) \cos (j t) d t=0 \quad \int_{0}^{2 \pi} \sin (k t) \sin (j t) d t=0 \quad k \neq j \\
\int_{0}^{2 \pi} \sin (k t) d t=0 \quad \int_{0}^{2 \pi} \cos (k t) d t=0
\end{gathered}
$$

Determing Coefficients of Fourier Series

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k t)+\sum_{k=1}^{\infty} b_{k} \sin (k t)
$$

- To find a_{0} (average value fo f over $[0,2 \pi]$) we integrate over $[0,2]$

$$
\begin{gathered}
\int_{0}^{2 \pi} f(t) d t=a_{0} \int_{0}^{2 \pi} d t+\sum_{k=1}^{\infty} a_{k} \int_{0}^{2 \pi} \cos (k t) d t+\sum_{k=1}^{\infty} b_{k} \int_{0}^{2 \pi} \sin (k t) d t \\
a_{0}=\frac{\int_{0}^{2 \pi} f(t) d t}{\int_{0}^{2 \pi} d t}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t
\end{gathered}
$$

- To determine coefficients a_{ℓ} for integer $\ell>0$ we multiply by $\cos (\ell t)$ and integate over $[0,2 \pi]$

$$
\int_{0}^{2 \pi} f(t) \cos (\ell t) d t=a_{0} \int_{0}^{2 \pi} \cos (\ell t) d t+\sum_{k=1}^{\infty} a_{k} \int_{0}^{2 \pi} \cos (k t) \cos (\ell t) d t+\sum_{k=1}^{\infty} b_{k} \int_{0}^{2 \pi} \sin (k t) \xrightarrow[\cos (\ell t) d t]{0}
$$

Since $\int_{0}^{2 \pi} \cos (k t) \cos (\ell t) d t=0$ if $k \neq \ell$ this only leaves the case $k=\ell$

$$
\begin{gathered}
\int_{0}^{2 \pi} f(t) \cos (\ell t) d t=a_{\ell} \int_{0}^{2 \pi} \cos ^{2}(\ell t) d t=a_{\ell} \pi \\
a_{\ell}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos (\ell t) d t
\end{gathered}
$$

- Applying a similar process for b_{k} using sin instead of cos

$$
b_{\ell}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin (\ell t) d t
$$

Fourier Series Coefficients Summary:

$$
\begin{gathered}
f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k t)+\sum_{k=1}^{\infty} b_{k} \sin (k t) \\
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) d t \quad a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos (k t) d t \quad b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin (k t) d t
\end{gathered}
$$

Complex Number Review

 for $z \in \mathbb{C}$ we can write $z=a+b i$ where $i=\sqrt{-1}$ and $a, b \in \mathbb{R}$- Conjugate: $\bar{z}=\overline{a+b i}=a-b i$
- Modulus/norm/abs: $|z|=\sqrt{a^{2}+b^{2}}$
- Argument/phase/angle: $\operatorname{Arg}(z)=\arctan (b / a)$

Euler's Forumla: $e^{i \theta}=\cos (\theta)+i \sin (\theta)$

$$
e^{-i \theta}=\cos (-\theta)+i \sin (-\theta) \quad \leftrightarrow \quad e^{-i \theta}=\cos (\theta)-i \sin (\theta)
$$

This leads to two key identities:

$$
\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \sin (\theta)=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Fourier Series with Complex Exponentials

$$
f(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k t)+\sum_{k=1}^{\infty} b_{k} \sin (k t) \quad \rightarrow \quad f(t)=\sum_{k=-\infty}^{+\infty} c_{k} e^{i k t}
$$

For $k>0$ we can convert using

$$
a_{0}=c_{0} \quad c_{k}=\frac{a_{k}}{2}-\frac{i b_{k}}{2} \quad c_{-k}=\frac{a_{k}}{2}+\frac{i b_{k}}{2}
$$

To find c_{k} directly we use the property

$$
\int_{0}^{2 \pi} e^{i k t} e^{-i \ell t} d t= \begin{cases}0 & k \neq \ell \\ 2 \pi & k=\ell\end{cases}
$$

Then we have coefficient formula:

$$
c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k t} f(t) d t
$$

Discrete Fourier Transform

Consider a vector of discrete data: f_{0}, \ldots, f_{N-1} for N uniformaly spaced data points (N assumed even)
Our goal is to convert these equal spaced samples of a unknown function into frequency domain, perform some computation, then convert back to time/space-domain and some desired modification to input data:

The Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) are:

$$
\begin{gathered}
f_{n}=\sum_{k=0}^{N-1} F_{k} W^{n k} \quad F_{k}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n} W^{-n k} \\
W=e^{\frac{2 \pi i}{N}} \quad e^{i \theta}=\cos \theta+i \sin \theta
\end{gathered}
$$

Roots of Unity

$$
W=e^{\frac{2 \pi i}{N}} \quad \rightarrow \quad W^{k}=e^{\frac{2 \pi i k}{N}}
$$

This is the N th roots of unity for $k \in \mathbb{Z}$
Example: for $N=5$ roots of unity we have $W_{5}^{k}=e^{\frac{2 \pi i k}{5}}$ which can be visualized as $k=1$ going a fifth around a unit circle, $k=2$ going 2 fifths around, and so on:

This means that for $n \in \mathbb{Z}$

$$
\left|W^{k}\right|=1 \quad W_{5}^{5 n}=1 \quad W_{5}^{k+5 n}=W_{5}^{k}
$$

Orthogonality Identity:

$$
\sum_{j=0}^{N-1} W^{j k} W^{-j \ell}=\sum_{j=0}^{N-1} W^{j(k-\ell)}=N \delta_{k, \ell}
$$

With Kronecker delta function: $\delta_{k, \ell}= \begin{cases}1 & k=\ell \\ 0 & k \neq \ell\end{cases}$
Assume k, ℓ are integers in $[0, N-1]$

- For $k=\ell$

$$
\sum_{j=0}^{N-1} W^{j(0)}=\sum_{j=0}^{N-1} 1=N
$$

- For $k \neq \ell$ we begin with the finite geometric series

$$
x^{N}-1=(x-1) \underbrace{\left(x^{N-1}+\cdots+x+1\right)}_{\sum_{j=0}^{N-1} x^{j}} \rightarrow \sum_{j=0}^{N-1} x^{j}=\frac{x^{N}-1}{x-1}
$$

Applying to our expression

$$
\sum_{j=0}^{N-1}\left(W^{(k-\ell)}\right)^{j}=\frac{\left(W^{k-\ell}\right)^{N}-1}{W^{k-\ell}-1}=0
$$

Since $k-\ell$ must be non-zero some integer then $\left(W^{k-\ell}\right)^{N}=1$ and numerator becomes 0
Remark: this is a discrete version of a simular continuous identity we saw earlier

$$
\int_{0}^{2 \pi} e^{i k t} e^{-i \ell t} d t= \begin{cases}0 & k \neq \ell \\ 2 \pi & k=\ell\end{cases}
$$

Inverse Discrete Fourier Transform (IDFT)

Consider N equality spaced data points $\left(t_{n}, f_{n}\right)$ over the domain $[0, T]$ for $n=0, \ldots, N-1$ then

$$
t_{n}=\frac{n T}{N}
$$

We then truncate the Fourier series so it only contains N terms

$$
f(t)=\sum_{k=-\infty}^{+\infty} c_{k} e^{i k t} \rightarrow f(t) \approx \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} c_{k} e^{\frac{(2 \pi i) k t}{T}}
$$

Using $f\left(t_{n}\right)=f_{n}$ for any nth discrete data point $t_{n}=\frac{n T}{N}$

$$
f_{n}=\sum_{-\frac{N}{2}+1}^{\frac{N}{2}} c_{k} e^{\frac{(2 \pi i) k t_{n}}{T}}=\sum_{-\frac{N}{2}+1}^{\frac{N}{2}} c_{k} e^{\frac{(2 \pi i) k n}{N}}=\sum_{k=0}^{\frac{N}{2}} c_{k} e^{\frac{i 2 \pi n k}{N}}+\sum_{k=-\frac{N}{2}+1}^{-1} c_{k} e^{\frac{i 2 \pi n k}{N}}
$$

- Define c_{j} outside range $\left[-\frac{N}{2}+1, \frac{N}{2}\right]$ to be periodic, that is $c_{j \pm N}=c_{j}$
- Then apply change of variables $k=j-N$ on the 2 nd term
- Notice that $e^{-i 2 \pi n}=\cos (2 \pi n)-i \sin (2 \pi n)=1$ for any n

$$
\sum_{k=-\frac{N}{2}+1}^{-1} c_{k} e^{\frac{i 2 \pi n k}{N}} \rightarrow \sum_{j=\frac{N}{2}+1}^{N-1} c_{j-N} e^{\frac{i 2 \pi n j}{N}} e^{-i 2 \pi n} \rightarrow \sum_{j=\frac{N}{2}+1}^{N-1} c_{j} e^{\frac{i 2 \pi n j}{N}}
$$

Then plugging back into f_{n} we can recombine the sumations:

$$
f_{n}=\sum_{k=0}^{\frac{N}{2}} c_{k} e^{\frac{i 2 \pi n k}{N}}+\sum_{k=\frac{N}{2}+1}^{N-1} c_{k} e^{\frac{i 2 \pi n k}{N}} \rightarrow \quad f_{n}=\sum_{k=0}^{N-1} c_{k} e^{\frac{i 2 \pi n k}{N}}
$$

Then we rename c_{k} into the N discrete Fourier coefficients F_{k} corresponding to our N input points f_{n}

$$
f_{n}=\sum_{k=0}^{N-1} F_{k} W^{n k} \quad \text { where } W=e^{\frac{i 2 \pi}{N}}
$$

Discrete Fourier Transform (DFT)

Like the continuous case we use orthogonality to isolate the Fourier coefficients F_{k}, so begin with the IDFT

$$
f_{n}=\sum_{k=0}^{N-1} F_{k} W^{n k} \quad \text { for } W=e^{\frac{2 \pi i}{N}}
$$

To get the k coefficient multiply both sides by $W^{-n k}$ and sum from 0 to $N-1$

$$
\begin{aligned}
\sum_{n=0}^{N-1} f_{n} W^{-n k} & =\sum_{n=0}^{N-1} \sum_{j=0}^{N-1} F_{j} W^{n j} W^{-n k} \\
& =\sum_{j=0}^{N-1} F_{j} \sum_{n=0}^{N-1} W^{n(j-k)} \\
& =\sum_{j=0}^{N-1} F_{j} N \delta_{j, k} \\
& =F_{k} \cdot N
\end{aligned}
$$

$$
=\sum_{j=0}^{N-1} F_{j} N \delta_{j, k} \quad \text { (Roots of unity orthogonality) }
$$

Thus by reorganizing we get our Discrete Fourier Transform

$$
F_{k}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n} W^{-n k}
$$

Given data f_{n} (for $n=0, \ldots, N-1$) we can find corresponding F_{k} (for $k=0, \ldots, N-1$)
Properties of the DFT:

- Sequence $\left\{F_{k}\right\}$ is doubly infinite and periodic (if we allow $k<0$ or $k>N-1$ then F_{k} repeat)
- Conjugate Symmetry: if data f_{n} is real then $F_{k}=\overline{F_{N-k}}$ (symmetric about $k=\frac{N}{2}$)

$$
\overline{F_{N-k}}=\overline{\frac{1}{N} \sum_{n=0}^{N-1} f_{n} W^{-n(N-k)}}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n} \overline{W^{-n N+n k}}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n} \overline{W^{n k}}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n} W^{-n k}=F_{k}
$$

- Coefficient $F_{0}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n}$ is the average of data values
- Frequencies of corresponding waves increase on $k=0$ to $\frac{N}{2}$ then decrease on $k=\frac{N}{2}+1$ to $N-1$

Discrete Fourier Transform Examples

$N=12$ samples, $F_{0}=0$ average, $F_{1}=F_{11}=0.5$ (since $\left.F_{k}=\overline{F_{12-k}}\right)$ adds a wave that repeats once:

To understand why this makes sense recall Euler's identities and f_{n} before rearranging:

$$
\cos (\theta)=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad f_{n}=\sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} c_{k} e^{\frac{(2 \pi i) k n}{N}}
$$

When $c_{1}=c_{-1}=0.5$ (these are corresponding c_{k} to F_{k}) with all others being 0

$$
f_{n}=0.5 e^{\frac{2 \pi i n}{N}}+0.5 e^{\frac{-2 \pi i n}{N}}=\cos \left(\frac{2 \pi n}{N}\right)
$$

Example: discrete data from a smooth bump vs rough bump

Notice that enough the rough bump has more irregularity the frequencies F_{1} and F_{8} still dominate
Remark: When Fourier coefficients are complex we plot their modulus (magnitude)
Remark: The F_{0} coefficient is usually shown separately because its size can make the graph hard to read
Remark: Different definitions of DFT/IDFT can be found in literature/code

- We use the following:

$$
f_{n}=\sum_{k=0}^{N-1} F_{k} W^{n k} \quad F_{k}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n} W^{-n k}
$$

- SciPy (and some other sources) use:

$$
f_{n}=\frac{1}{N} \sum_{k=0}^{N-1} F_{k} W^{n k} \quad F_{k}=\sum_{n=0}^{N-1} f_{n} W^{-n k}
$$

So be careful when coding in Jupyter that your Fourier coefficients F_{k} might look much larger.

Matrix Form of DFT and IDFT

$$
\mathrm{DFT}: F=M f \quad \operatorname{IDFT}: f=M^{-1} F=N \overline{M^{T}} F
$$

Where the k th column of M is

$$
\frac{1}{N}\left[\begin{array}{c}
W^{0} \\
W^{-k} \\
W^{-2 k} \\
W^{-3 k} \\
\vdots \\
W^{-(N-1) k}
\end{array}\right]
$$

Example: Using $N=4$ then we have $W^{0}=1, W^{1}=i, W^{2}=-1, W^{3}=-i$

$$
F=\left[\begin{array}{c}
-2 \\
2+i \\
-2 \\
2-i
\end{array}\right] \quad M=\frac{1}{4}\left[\begin{array}{cccc}
W^{0} & W^{0} & W^{0} & W^{0} \\
W^{0} & W^{-1} & W^{-2} & W^{-3} \\
W^{0} & W^{-2} & W^{-4} & W^{-6} \\
W^{0} & W^{-3} & W^{-6} & W^{-9}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right]
$$

Then after finding the conjugate of M then we can apply the IDFT to F

$$
f=N \overline{M^{T}} F=4 \cdot \frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]\left[\begin{array}{c}
-2 \\
2+i \\
-2 \\
2-i
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
-8 \\
2
\end{array}\right]
$$

Notice if we directly apply this then DFT and IDFT will both take $O\left(n^{2}\right)$ complex floating-point operations.

Fast Fourier Transform

We can make DFT and IDFT faster by deploying a divide and conquer strategy where we split the list in half until we reach the base case of individual numbers.

Remark: This requires $N=2^{m}$ for some m, so we sometimes need to pad our initial data with zeros

Dividing Up the Input

We begin by spliting the DFT of sequence f_{n} and assume that N is even:

$$
F_{k}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n} W^{-n k}=\frac{1}{N} \sum_{n=0}^{\frac{N}{2}-1} f_{n} W^{-n k}+\frac{1}{N} \sum_{n=\frac{N}{2}}^{N-1} f_{n} W^{-n k}
$$

Reindex 2nd term using $n=m+\frac{N}{2}$ then rename m back to n

$$
\frac{1}{N} \sum_{n=\frac{N}{2}}^{N-1} f_{n} W^{-n k} \rightarrow \frac{1}{N} \sum_{m=0}^{\frac{N}{2}-1} f_{m+\frac{N}{2}} W^{-k\left(m+\frac{N}{2}\right)} \quad \rightarrow \quad \frac{1}{N} \sum_{n=0}^{\frac{N}{2}-1} f_{n+\frac{N}{2}} W^{-n k} W^{-k \frac{N}{2}}
$$

Notice $W^{\frac{-k N}{2}}=\left(e^{\frac{2 \pi i}{N}}\right)^{\frac{-k N}{2}}=e^{-\pi i k}=(-1)^{k}$. Subbing everything back into the sumation and combining:

$$
F_{k}=\frac{1}{N} \sum_{n=0}^{\frac{N}{2}-1} f_{n} W^{-n k}+\frac{1}{N} \sum_{n=0}^{\frac{N}{2}-1} f_{n+\frac{N}{2}} W^{-n k}(-1)^{k}=\frac{1}{N} \sum_{n=0}^{\frac{N}{2}-1}\left(f_{n}+f_{n+\frac{N}{2}}(-1)^{k}\right) W^{-n k}
$$

Thus using $j=0$ to $\frac{N}{2}-1$ we can create two lists: even entries $(k=2 j)$ and odd entries $(k=2 j+1)$

$$
\begin{gathered}
\text { Even: } F_{2 j}=\frac{1}{N} \sum_{n=0}^{\frac{N}{2}-1}\left(f_{n}+f_{n+\frac{N}{2}}\right) W^{-2 n j} \\
\text { Odd: } F_{2 j+1}=\frac{1}{N} \sum_{n=0}^{\frac{N}{2}-1}\left[\left(f_{n}-f_{n+\frac{N}{2}}\right) W^{-n}\right] W^{-2 n j}
\end{gathered}
$$

We call the extra W^{-n} in the odd case the Twiddle Factor.
As a direct result f_{n} can be split into two half-length vectors

$$
g_{n}=\frac{1}{2}\left(f_{n}+f_{n+\frac{N}{2}}\right) \quad h_{n}=\frac{1}{2}\left(f_{n}-f_{n+\frac{N}{2}}\right) W^{-n}
$$

Notice that $n=0$ to $\frac{N}{2}-1$ and we update $N:=\frac{N}{2}$ which combined with $W_{N}^{-2 n j}=W_{\frac{N}{2}}^{-n j}$ ensures that

$$
F_{2 j}=\operatorname{DFT}(g) \quad F_{2 j+1}=\operatorname{DFT}(h)
$$

This spliting is referred to as a Butterfly Operation:

> It mildly resembles a butterfly

Fast Fourier Transform (FFT)

To perform a Fast Fourier Transform the butteryfly operation is applied recursively until each list contains only one value (Notice that taking the DFT of a list with one element does not change the list).

Since each step performs even-odd index spltting the order of Fourier coefficients needs to be unscrambled. We observe that the binary indices of the output indices have bits in reverse order from the input.

$$
\left[\begin{array}{l}
f_{0} \\
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6} \\
f_{7}
\end{array}\right]=\left[\begin{array}{l}
f_{000} \\
f_{001} \\
f_{010} \\
f_{011} \\
f_{100} \\
f_{101} \\
\text { Perform All }_{\text {Butrefly }} \\
\text { Stages }
\end{array} \quad\left[\begin{array}{l}
F_{0} \\
F_{4} \\
F_{2} \\
f_{110} \\
F_{6} \\
F_{1} \\
F_{5} \\
F_{3} \\
F_{7}
\end{array}\right]=\left[\begin{array}{l}
F_{000} \\
F_{100} \\
F_{010} \\
F_{110} \\
F_{001} \\
F_{101} \\
F_{011} \\
F_{111}
\end{array}\right]\right.
$$

Thus to unscramble the FFT output we convert the indices to binary and bit-reverse them to get index.

Inverse Fast Fourier Transform (IFFT)

The DFT and IDFT has very similar forms so we can use the same core butterfly algorithm to perform either direction if we make some minor changes.

The generic expression for IDFT and DFT is:

$$
f_{k}^{\prime}=\frac{1}{N} \sum_{n=0}^{N-1} f_{n} U^{n k}
$$

- DFT: $U=W^{-1}$
- IDFT: $U=W$ and we post-multiply by N

As a result for IFFT we change the twiddle factor to W^{n} and multiply the final result by N

Naive vs FFT Performance

Naive algorithm: $O\left(N^{2}\right)$ complex FP operations
FFT algorithm: $O\left(N \log _{2} N\right)$ operations

- $O(N)$ operations to split the arrays in two at each stage
- There are $m=\log _{2} N$ stages, since data is (or was padded to) length $N=2^{m}$

FFT Example

Stage 1: split the list of $N=8$ entries

$$
f=\left[\begin{array}{l}
4 \\
3 \\
2 \\
1 \\
4 \\
3 \\
2 \\
1
\end{array}\right] \rightarrow \frac{\frac{1}{2}\left[\begin{array}{l}
4+4 \\
3+3 \\
2+2 \\
1+1
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{l}
(4-4) W^{-0} \\
(3-3) W^{-1} \\
(2-2) W^{-2} \\
(1-1) W^{-3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}{\left[\begin{array}{l}
\frac{1}{2} \\
\end{array}\right]}
$$

Stage 2: split the lists of $N=4$ entries (notice that $W^{-1}=-i$)

Stage 3: split the lists of $N=2$ entries
$\left.\begin{array}{ccc}{\left[\begin{array}{l}3 \\ 2\end{array}\right]} & \frac{1}{2}[3+2]=[2.5] \\ \frac{1}{2}\left[(3-2) W^{-0}\right]=[0.5] \\ {\left[\begin{array}{c}1 \\ -i\end{array}\right]} & \frac{1}{2}[(1-i)]=[0.5-0.5 i] \\ {\left[\begin{array}{c}0 \\ 0\end{array}\right]} & {\left[(1+i) W^{-0}\right]=[0.5+0.5 i]} \\ {[0} \\ 0 \\ 0\end{array}\right] \quad[0] \quad \rightarrow \quad\left[\begin{array}{c}2.5 \\ 0.5 \\ 0.5-0.5 i \\ 0.5+0.5 i \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Bit-reverse Stage:

0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

0.5

0.5-0.5 i

0.5+0.5 i

0

0

0

0\end{array}\right] \rightarrow\)| 0 | 000 |
| :--- | :--- |
| 4 | 100 |
| 2 | 010 |
| 6 | 110 |
| 1 | 001 |
| 5 | 101 |
| 3 | 011 |
| 7 | 111 |\(\left[\begin{array}{c}2.5

0.5-0.5 i

0

0.5

0

0.5+0.5 i

0\end{array}\right]\)

Notice that since the input data was all real this satisfies conjugate symmetry

$$
F_{k}=\overline{F_{N-k}}
$$

This does not apply to F_{0} since F_{N} is outside the array of length N (max index is $N-1$)

Applications of the Fourier Transform

Image Compression

The 2D DFT is essentially one vertical 1D DFT and one horizontal 1D DFT combined:

$$
F_{k, l}=\frac{1}{N M} \sum_{n=0}^{N-1} \sum_{j=0}^{M-1} f_{n, j} W_{N}^{-n k} W_{M}^{-j l}
$$

Result is a 2D array of Fourier coefficients $F_{k, l}$. It uses two roots of unity (one per dimension):

$$
W_{N}=e^{\frac{i 2 \pi}{N}} \quad W_{m}=e^{\frac{i 2 \pi}{M}}
$$

The 2D FFT can be computed efficiently by using two nested 1D FFTs:

- Transform each row (separately) using 1D FFTs
- Transform each column of the result using 1D FFTs

Numpy provides fft2 and ifft2 (watch out for $1 / N M$ scaling convention differences)
Complexity of 2D FFT is $O\left(M N\left(\log _{2} M+\log _{2} N\right)\right)$ compared to the naive algorithm's $O(M N(M+N))$

Compression Strategy:

- Take the 2D FFT of image intensities
- Create an approximate version by throwing away small Fourier coefficients $\left|F_{k, l}\right|<$ tol
- Store the remaining and perform IFFT when you want to view the image again

Note that the output image may contain imaginary values which we can safely ignore.

Remark: "compressed by 85% " means we are throwing away 85% of the fourier coefficients

Block-based Image Compression: often we subdidivide an image into smaller blocks $(16 \times 16$ or $8 \times 8)$ then compress each block independently:

Pixels within each block often have similar/related data so there are less active coefficients.

Understanding Aliasing

When capturing audio/video/images (or any kind of signal) we are often taking discrete point samples of some continuous signal.

- Sampling rate: $F_{s}=N / T=$ number of discrete samples per second
- Fourier frequency: $\frac{k}{T}=\frac{k F_{s}}{N}=$ number of cycles per second $(1 / s=\mathrm{Hz})$

The index k of a Fourier coefficient determines the frequeny (cycles per unit time) it corresponds to.

Is this discrete data sampled from a low frequency or a high frequency continuous function?

The true answer is unknowable due to aliasing:

The high frequency signal (red) can aliases as (appear to be) a lower frequency signal (blue).

Some exmaples of aliasing in action:

- Photography: Moire patterns occur from our spaced point samples of some scene:

- Computer Graphics: a checkboard pattern gives aliasing patterns when sampled into a few pixels:

In the right image we prevent aliasing by filtering/blurring out higher frequencies (anti-aliasing)

- Stroboscopic Effect: temporal aliasing of video frames
- Wagon wheel effect
- Helicopter rotor and camera shutter
- Strobe light makes water drops fall in slow motion
- Zoetrope animation toy
- 3D Zoetrope animation
- Water and vibrations

Aliasing: The Math

Consider the Fourier series of a continuous signal for a period T

$$
f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{\frac{i 2 \pi k t}{T}}
$$

When we sample this signal at points $t_{n}=n \Delta t=n \frac{T}{N}$

$$
f_{n}=f\left(t_{n}\right)=\sum_{k=\infty}^{\infty} c_{k} e^{\frac{i 2 \pi k n}{N}}=\sum_{k=-\infty}^{\infty} c_{k} W^{n k}
$$

$k \in(-\infty, \infty)$ allows arbitrarily high frequencies, comparing this to our IDFT approximation:

$$
f_{n}=\sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} F_{k} W^{n k} \quad \rightarrow \quad k \in\left[-\frac{N}{2}+1, \frac{N}{2}\right]
$$

This only uses N coefficients F_{k} so frequencies higher than this are thrown away.

To relate F_{k} and c_{k} we plug the equation containing c_{k} into our DFT equation

$$
F_{\ell}=\frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} f_{n} W^{-n \ell}=\frac{1}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}}\left(\sum_{k=-\infty}^{\infty} c_{k} W^{n k}\right) W^{-n \ell}=\sum_{k=-\infty}^{\infty} \frac{c_{k}}{N} \sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}} W^{n(k-\ell)}
$$

Notice $W^{n(k-\ell)}$ hints at using orthogonality but we will need to adapt it a bit to handle $k \in(-\infty, \infty)$

$$
\sum_{p=-\frac{N}{2}+1}^{\frac{N}{2}} W^{p(k-\ell)}=N\left(\delta_{k, \ell}+\delta_{k, \ell+N}+\delta_{k, \ell-N}+\delta_{k, \ell+2 N}+\delta_{k, \ell-2 N}+\cdots\right)
$$

When $\ell=k+j N($ i.e. $\ell \equiv k \bmod N)$ then $W^{p(\ell-k)}=W^{p j N}=1$ since W is an N th root of unity.

Then using this orthogonality identity we have DFT coefficients

$$
\begin{aligned}
F_{\ell} & =\sum_{k=-\infty}^{\infty} \frac{c_{k}}{N} N\left(\delta_{k, \ell}+\delta_{k, \ell+N}+\delta_{k, \ell-N}+\cdots\right) \\
& =c_{\ell}+c_{\ell+N}+c_{\ell-N}+c_{\ell+2 N}+c_{\ell-2 N}+\cdots
\end{aligned}
$$

We find that F_{ℓ} is c_{ℓ} along with a bunch of higher frequncy signals $\left(c_{\ell+N}+c_{\ell-N}+c_{\ell+2 N}+c_{\ell-2 N}+\cdots\right)$ summed into a single term.
The high frequencies from $c_{k} \notin\left[-\frac{N}{2}+1, \frac{N}{2}\right]$ contribute to (alias as) low frequency F_{k} for $k \in\left[-\frac{N}{2}+1, \frac{N}{2}\right]$.

Nyquist frequency:

If the original continuous signal has frequencies $c_{k} \neq 0$ for

$$
|k| \geq \frac{N}{2}
$$

those frequences alias (i.e. get added) to a lower frequency.

- Once a signal is discretely sampled, there is no way to distinguish aliased (high) frequencies from real (low) frequencies
- We have to sample at twice the rate of the highest occuring frequency of the original signal to avoid aliasing

Treating Aliasing:

We have two partial solutions for aliasing

- Increase sampling resolution to capture higher frequencies
- Filter before sampling to remove frequencies that are too high so they don't cause alising

Digital cameras have optical lowpass filter that physically blur the light to filter out the frequencies the camera cannot handle, before it hits the image sensor.

Correlation

Finding similarities/relationships between different signals/data, with applications to pattern matching, synchronizing communications, signal detection, statistics, etc.

Consider two real periodic data sets y_{i} and z_{i} for $i \in[0, N-1]$, the correlation function ϕ_{n} defined as

$$
\phi_{n}=\frac{1}{N} \sum_{i=0}^{N-1} y_{i+n} z_{i}
$$

where n is the offset. We want to find n that maximizes ϕ_{n} (i.e. maximum correlation between the data).
Essentially: shift one vector by n, take the dot product, and divide by N (note that data is periodic)

In a more detailed example:

$$
n=0: \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 0 & 3 & 4 \\
\hline 0 & 2 & 4 & 2 & 1 & 2 & 4 \\
\hline
\end{array} \begin{array}{lll}
\hline 0
\end{array} \quad \begin{aligned}
& 0+4+12+8+0+6+16=46 \\
& \\
& \phi_{0}=\frac{46}{7} \approx 6.6
\end{aligned}
$$

- Naive algorithm uses two nested for loops of length N so $O\left(N^{2}\right)$
- However using the FFT we can do the same thing in $O\left(N \log _{2} N\right)$

In time-domain the correlation is

$$
\phi_{n}=\frac{1}{N} \sum_{i=0}^{N-1} y_{i+n} z_{i}
$$

in frequency-domain there is no for loop required

$$
\Phi_{n}=Y_{k} \overline{Z_{k}}
$$

Consider $Z=F F T(z)$ and $Y=F F T(y)$ we have 4 equations:

$$
\begin{align*}
\phi_{n} & =\frac{1}{N} \sum_{\ell=0}^{N-1} y_{\ell+n} z_{\ell} \tag{1}\\
y_{\ell+n} & =\sum_{m=0}^{N-1} Y_{m} W^{m(\ell+n)} \tag{2}\\
z_{\ell} & =\sum_{r=0}^{N-1} Z_{r} W^{r \ell} \tag{3}\\
\Phi_{k} & =\frac{1}{N} \sum_{n=1}^{N-1} \phi_{n} W^{-n k} \tag{4}
\end{align*}
$$

Then writing Φ_{k} in terms of Y and Z by subbing (1) in (4) then subbing (2) and (3) into that

$$
\begin{aligned}
\Phi_{k} & =\frac{1}{N} \sum_{n=1}^{N-1}\left(\frac{1}{N} \sum_{\ell=0}^{N-1} y_{\ell+n} z_{\ell}\right) W^{-n k} \\
& =\frac{1}{N^{2}} \sum_{n} \sum_{\ell}\left[\left(\sum_{m=0}^{N-1} Y_{m} W^{m(\ell+n)}\right)\left(\sum_{r=0}^{N-1} Z_{r} W^{r \ell}\right) W^{-n k}\right] \\
& =\frac{1}{N^{2}} \sum_{n} \sum_{\ell} \sum_{r} \sum_{m} Y_{m} Z_{r} W^{m \ell} W^{m n} W^{r \ell} W^{-n k} \\
& =\frac{1}{N^{2}} \sum_{n} \sum_{r} \sum_{m}\left[Y_{m} Z_{r} W^{-n(k-m)} \sum_{\ell} W^{\ell(r+m)}\right] \\
& =\frac{1}{N^{2}} \sum_{n} \sum_{r} \sum_{m} Y_{m} Z_{r} W^{-n(k-m)} N \delta_{r, N-m} \\
& =\frac{1}{N} \sum_{n} \sum_{m} Y_{m} Z_{N-m} W^{-n(k-m)} \\
& =\frac{1}{N} \sum_{m} Y_{m} Z_{N-m} \sum_{n} W^{-n(k-m)} \\
& =\frac{1}{N} \sum_{m} Y_{m} Z_{N-m} N \delta_{k, m} \\
& =Y_{k} Z_{N-k}
\end{aligned}
$$

Then assuming real input $Z_{k}=\overline{Z_{N-k}}$ and $Z_{N-k}=\overline{Z_{k}}$

$$
\Phi_{k}=Y_{k} \overline{Z_{k}}
$$

Overall algorithm for correlation via FFT:

- Apply FFT $\left(O\left(N \log _{2} N\right)\right): Y=\operatorname{FFT}(y)$ and $Z=\operatorname{FFT}(z)$
- Compute the products $(O(N)): \Phi_{k}=Y_{k} \bar{Z}_{k}$ for $k=0, \ldots, N-1$
- Apply IFFT $\left(O\left(N \log _{2} N\right)\right): \phi=\operatorname{IFFT}(\Phi)$

Complexity of $O\left(N \log _{2} N\right)$ compared to naive two for loop $O\left(N^{2}\right)$

In practice input signals/data are often not actually periodic:

- In this case, wrap-around effect is undesired since actual signals do not wrap
- To avoid wrap-around pollution we pad both arrays with zeros up to twice their original length

1 2 3 4 0 3 4 0 0 0 0 0 0 0
0 2 4 2 1 2 4 0 0 0 0 0 0

Numerical Linear Algebra

Page Rank

Page Rank is said to be the algorithm that launched Google.

- Previous ranking strategies ranked pages by times some keyword appeared, this often gave poor results and was easy to cheat.
- Yahoo used an alternative strategy of creating a human-curated directory structure but this method was slow and hard to update.

Google's key idea: if many web pages link to your website then it must be important.
Academic paper success is measured using a similar method:

- When writing a research paper will usually cite earlier work
- If a paper gets cited many times then that paper was influential (which probably implies it is good)

We represent the web as a directed graph

- Nodes: represent websites
- Arcs: represent links from one page to another
- Degree: number of arcs leaving that node

To store this we use an adjacency matrix

$$
G_{i j}= \begin{cases}1 & \text { if link } j \rightarrow i \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

Note that matrix G is not necessarily symmetric (if it were symmetric then the graph would be undirected)

	rom						
		12	3	4	5	6	7
	1 [0	01	0	1	0	0	07
	20	0	0	0	0	0	0
	30	01	0	1	0	0	0
To	40	01	1	0	0	0	0
	50	0	0	0	0	0	1
	60	0	0	0	1	0	0
	70	0	0	0	0	1	0

We can interpret a link from page j to page i as a vote and set outgoing links to have equal influence

$$
\frac{1}{\operatorname{deg}(j)}
$$

Example: if j has a degree of 3 and points to i then i gets $1 / 3$ votes (local importance)
For the global importance of page i we also need to consider how important page j is to determine how much its $1 / 3$ vote matters.

Random Surfer Model

Imagine a user that starts at some page and follows links at random from page to page for K steps, then restarts on some other random page repeating this R times.
They will probably end up on important pages more often, so we can estimate the overall importance as:

$$
\text { Rank (page } i)=\frac{\text { Visits to page } i}{\text { Total visits to all pages }}
$$

```
// Random Surfer Algorithm
Rank(m) = 0, m = 1,...,R
For m = 1,...,R
    j = m
    For k = 1,...,K
        Rank(j) = Rank(j) + 1
        Randomly select outlink l of page j
        j = l
    EndFor
EndFor
Rank(m) = Rank(m)/(K*R), m = 1,\ldots,R
```

Issues with this algorihm that we will attempt to solve

- Number of real web pages is massive (over a billion) and R must be much larger
- Number of steps K must be large to get representative sample
- Dead end links leads to getting stuck on some page
- Cycles leads to getting stuck on closed subset of pages

Markov Chain Matrix

We can think of the votes as a probability that a random surfer would take some link

$$
P_{i j}= \begin{cases}\frac{1}{\operatorname{deg}(j)} & \text { if link } j \rightarrow i \text { exists } \\ 0 & \text { otherwise }\end{cases}
$$

To build matrix P we use adjacency matrix G and divide entries of each column by the column sum.

Dead Ends: when we reach a dead end simply teleport to a new page at random:

$$
P^{\prime}=P+\frac{1}{R} e d^{T}
$$

where $e=[1, \ldots, 1]^{T}$ and d^{T} indicates dead end columns with 1 .

Cycles: to remove cycles we add a small probability $1-\alpha$ to teleport from any page to any other page

$$
M=\alpha P^{\prime}+(1-\alpha) \frac{1}{R} e e^{T}
$$

$e e^{T}$ is a matrix of all ones.

We call this combined matrix M our Google matrix (Google purportedly used $\alpha \approx 0.85$ originally)
Each M expresses one step of random surfing:

$$
M=\alpha\left(P+\frac{1}{R} e d^{T}\right)+(1-\alpha) \frac{1}{R} e e^{T}
$$

Example of a Google matrix:

$$
M=\alpha\left(\left[\begin{array}{cccccc}
0 & 0 & 1 / 4 & 0 & 0 & 1 / 4 \\
0 & 0 & 1 / 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 4 \\
0 & 1 / 2 & 1 / 4 & 0 & 1 / 2 & 1 / 4 \\
0 & 1 / 2 & 0 & 0 & 0 & 1 / 4 \\
0 & 0 & 1 / 4 & 0 & 1 / 2 & 0
\end{array}\right]+\left[\begin{array}{cccccc}
1 / 6 & 0 & 0 & 1 / 6 & 0 & 0 \\
1 / 6 & 0 & 0 & 1 / 6 & 0 & 0 \\
1 / 6 & 0 & 0 & 1 / 6 & 0 & 0 \\
1 / 6 & 0 & 0 & 1 / 6 & 0 & 0 \\
1 / 6 & 0 & 0 & 1 / 6 & 0 & 0 \\
1 / 6 & 0 & 0 & 1 / 6 & 0 & 0
\end{array}\right]\right)+\frac{(1-\alpha)}{6}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Google matrix M is an example of a Markov matrix.

- In general, a Markov matrix Q has two properties:

$$
0 \leq Q_{i j} \leq 1 \quad \text { and } \quad \sum_{i} Q_{i j}=1
$$

- A Probability Vector is a vector q such that

$$
0 \leq q_{i} \leq 1 \quad \text { and } \quad \sum_{i} q_{i}=1
$$

If the surfer starts at a random page with equal probabilities then we have a probability vector $p_{i}=\frac{1}{R}$.

To evolve the probability vector we need:

- Probability vector describing the initial state p^{0}
- Markov matrix M describing the transition probabilities among pages

Then the probabilities for our surfer to be at each page after one transition is

$$
p^{1}=M p^{0}
$$

Then for any step n, the next step probabilities are $p^{n+1}=M p^{n}$

To prove that p^{n+1} is a probability vector we have:

- $p_{i}^{n+1} \geq 0$ since it is just sums and products of probabilities ≥ 0
- $\sum_{i} p_{i}^{n+1}=1$ since

$$
\sum_{i} p_{i}^{n+1}=\sum_{i} \sum_{j} M_{i j} p_{j}^{n}=\sum_{j}\left(p_{j}^{n} \sum_{i} M_{i j}\right)=\sum_{j} p_{j}^{n}=1
$$

- $p_{i}^{n+1} \leq 1$ since there are no negative entries and it needs to sum to 1

The final question we want to check is if Page Rank will converge to a single answer:

$$
p^{\infty}=\lim _{k \rightarrow \infty}(M)^{k} p^{0}
$$

Then higher probabilities in p^{∞} implies a greater importance for a page (i.e. a higher rank)

Efficient Page Rank

A naive implementation of Page Rank will repeatedly multiply massive matrices each search (dimensions larger than 1 billion $\times 1$ billion)

To make it faster we exploit precomputation and sparsity:

- Precomputation: ranking vector p^{∞} is independent of the query so only needs to be computed once (then recomputed once a day/week)
- Each search will finds the subset of p^{∞} that matches the keywords
- Sparse Matrix: the default transition matrix P is a sparse matrix (Google matrix M is fully dense)
- Dense matrix: all entries are non-zero (stored in $N \times N$, manipulate "normally")
- Sparse matrix: most entries are zero (able to use a sparse data structure and usually prefer algorithms that avoid "destroying" sparsity (i.e. avoid filling zero entries))

Non-zero entries
(blue) in a dense matrix.

When performing sparse matrix-vector multiplication only non-zero matrix elements are ever accessed making it much faster.

The goal is to use linear algebra manipulations to perform the main iteration

$$
p^{n+1}=M p^{n}
$$

without ever creating/storing M. Thus we start with the definition of the Google matrix:

$$
M=\alpha\left(P+\frac{1}{R} e d^{T}\right)+\frac{1-\alpha}{R} e e^{T}
$$

- M is a fully dense matrix
- P is sparse since most pages to not link to a billion other pages
- $e d^{T}$ is dense in dead end columns (pages that do not link anywhere)
- $e e^{T}$ is fully dense (of all ones)

$$
\begin{aligned}
p_{n+1} & =M p_{n} \\
& =\underbrace{\alpha P p_{n}}_{(1)}+\underbrace{\frac{\alpha}{R} e d^{T} p_{n}}_{(2)}+\underbrace{\frac{1-\alpha}{R} e e^{T} p_{n}}_{(3)}
\end{aligned}
$$

1. Just perform sparse matrix-vector multiply (numpy has a built in sparse matrix data structure)
2. Perform $d^{T} p_{n}$ first (since $\left.e d^{T} p_{n}=e\left(d^{T} p_{n}\right)\right)$ to produce a scalar then we have

$$
\frac{\alpha}{R}\left(d^{T} p_{n}\right) e
$$

3. Perform $e^{T} p_{n}$ first (since $e e^{T} p_{n}=e\left(e^{T} p_{n}\right)$) to produce 1 because p_{n} sums to 1 and e is all ones

$$
\frac{1-\alpha}{R} e
$$

Putting this together we have:

$$
p_{n+1}=(\alpha P) p_{n}+\left(\frac{\left(\alpha d^{T}\right)}{R} p_{n}+\frac{1-\alpha}{R}\right) e
$$

Algorithm usually repeats until difference between p^{k} and p^{k-1} is smaller than some tolarence.

In modern serach have engines other factor besides pure link-based ranking:

- For example we can change standard teleportation with

$$
\frac{1-\alpha}{R} e e^{T} \quad \rightarrow \quad(1-\alpha) v e^{T}
$$

where special probbability vector v places extra weight on certain sites you like (or payed you)

Review: Eigenvalues and Eigenvectors

For matrix A when we have non-zero eigenvalue λ and non-zero eigenvector x then

$$
A x=\lambda x \quad \rightarrow \quad(A-\lambda I) x=0
$$

which implies that $A-\lambda I$ must be singular (non-invertable) for some λ

A singular matrix A satisfies $\operatorname{det} A=0$ so we solve the characteristic polynomial given by

$$
\operatorname{det}(A-\lambda I)=0
$$

Then find any vector in the nullspace of $(A-\lambda I)$ (vector space that gets mapped to zero) (since we want $A x=\lambda x$ we have x is both sides)

Recall: if matrix is invertible/non-singular then $A x=0$ has only the solution $x=0$

Convergence of Markov Matrices

1. Every Markov matrix Q has 1 as an eigenvalue

- Eigenvalues of Q and Q^{T} are equal since $\operatorname{det}(Q)=\operatorname{det}\left(Q^{T}\right)$ in general, and we have

$$
Q^{T} e=(1) e
$$

This is true because columns of Q sum to 1 , so the rows of Q^{T} sum to 1

- Then $\lambda=1$ is an eigenvalue of Q^{T} and also an eigenvalue of Q

2. Every eigenvalue of a Markov matrix Q satisifies $|\lambda| \leq 1$. So 1 is the largest eigenvalue

- First show that $\left|\lambda_{i}\right| \leq 1$ in Q^{T} by letting λ and x be eigenvalue/vector pair for Q

$$
Q^{T} x=\lambda x
$$

- Let k be the index of largest magnitude entry in x such that $\left|x_{j}\right| \leq\left|x_{k}\right|$ for all j

$$
\left(Q^{T} x\right)_{k}=\sum_{j=1}^{n} Q_{j k} x_{j}=\lambda x_{k}
$$

- Consider

$$
\begin{array}{rlr}
\left|\lambda x_{k}\right|=|\lambda|\left|x_{k}\right| & =\left|\sum_{j=1}^{n} Q_{j k} x_{j}\right| & \\
& \leq \sum_{j=1}^{n} Q_{j k}\left|x_{j}\right| & \quad \text { (Triangle inequality) } \tag{Triangleinequality}\\
& \leq \sum_{j=1}^{n} Q_{j k}\left|x_{k}\right| & \\
& \leq\left|x_{k}\right| \sum_{j=1}^{n} Q_{j k} & \\
& \leq\left|x_{k}\right| & \text { (Since }\left|x_{j}\right| \leq\left|x_{k}\right| \text {) }
\end{array}
$$

Thus $|\lambda|\left|x_{k}\right| \leq\left|x_{k}\right|$ becomes $|\lambda| \leq 1$ for Q^{T}. This holds for Q as well since it has the same eigenvalues.
3. A Markov matrix Q is a positive Markov matrix if $Q_{i j}>0$ for all i, j (definition so no proof)
4. Q is a positive Markov matrix implies one linearly independent eigenvector of Q with $|\lambda|=1$

- Won't prove this see course notes for reference if curious
- If Q is positive Markov matrix then eigenvector corresponding to $\lambda=1$ is unique (Markov chain must converge to only one result)

Using all these theorems we will prove that Page Rank will converge.

Theorem: If M is a positive Markov matrix, then Page Rank converges to a unique vector p^{∞} for initial probabilty vector p^{0}.

Let \vec{x}_{ℓ} be the corresponding eigenvector for λ_{ℓ} for all ℓ.
Assume we can write p^{0} (vector of equal values that sums to 1) as a linear combination of eigenvectors \vec{v}_{ℓ}

$$
p^{0}=\sum_{\ell} c_{\ell} \vec{x}_{\ell} \quad \text { for scalars } c_{\ell}
$$

Assume eigenvalues are sorted, so $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq$ etc.
Then \vec{x}_{1} corresponds to $\lambda_{1}=1$, and as a result PageRank computes

$$
\begin{aligned}
(M)^{k} p^{0}=(M)^{k} \sum_{\ell-1}^{R} c_{\ell} \vec{x}_{\ell} & =\sum_{\ell=1}^{R}(M)^{k} c_{\ell} \vec{x}_{\ell} \\
& =\sum_{\ell=1}^{R} \lambda_{\ell}^{k} c_{\ell} \vec{x}_{\ell} \\
& \left.=c_{1} \vec{x}_{1}+\sum_{\ell=2}^{R} \lambda_{\ell}^{k} c_{\ell} \vec{x}_{\ell} \quad \quad \text { (Since } \lambda_{1}=1\right)
\end{aligned}
$$

We know that $\left|\lambda_{\ell}\right|<1$ for $\ell>1$ so

$$
p^{\infty}=\lim _{k \rightarrow \infty}(M)^{k} p^{0}=\lim _{k \rightarrow \infty}\left(c_{1} \vec{x}_{1}+\sum_{\ell=2}^{R} \lambda_{\ell}^{k} c_{\ell} \vec{x}_{\ell}\right)=c_{1} \vec{x}_{1}+\sum_{\ell=2}^{R}\left(\lim _{k \rightarrow \infty} \lambda_{\ell}^{k}\right) c_{\ell} \vec{x}_{\ell}=c_{1} \vec{x}_{1}
$$

We see that the other non-dominant eigenvalues get scaled to 0 .
(Result of PageRank is just approximating the dominant eigenvector)

If we start with a different vector $q^{0}=\sum_{\ell} b_{\ell} \vec{x}_{\ell}$ then $q^{\infty}=b_{1} \vec{x}_{1}$
Since q^{∞} and p^{∞} are probability vectors they both sum to 1

$$
\sum_{i=1}^{R} b_{1} x_{1}(i)=\sum_{i=1}^{R} c_{1} x_{1}(i)=1 \quad \rightarrow \quad b_{1} \sum_{i=1}^{R} x_{1}(i)=c_{1} \sum_{i=1}^{R} x_{1}(i) \quad \rightarrow \quad b_{1}=c_{1}
$$

Thus $p^{\infty}=q^{\infty}$ so PageRank converges to a unique vector

Convergence Rate

the 2nd largest eigenvalue $\left|\lambda_{2}\right|$ will determine how quickly PageRank will converge as it is the slowest decreasing unwanted component of p^{0}

$$
p^{k}=(M)^{k} p^{0}=c_{1} \vec{x}_{1}+\sum_{\ell=2}^{R} \lambda_{\ell}^{k} c_{\ell} \vec{x}_{\ell}
$$

It turns out for our Google matrix $\left|\lambda_{2}\right| \approx \alpha$ (won't prove this)

Example: Say we have $\alpha=0.85$ and we perform:

$$
\alpha=0.85 \rightarrow\left|\lambda_{2}\right|^{114} \approx|0.85|^{114} \approx 10^{-8}
$$

This says after 114 iterations, vector components of p^{0} not corresponding to eigenvalue $\left|\lambda_{1}\right|$ will be scaled down by 10^{-8} (or smaller)

Then we can say vector p^{114} is a good approximation the dominant eigenvector \vec{x}_{1}.

Smaller $\left|\lambda_{2}\right| \approx \alpha$ implies faster convergence, however $\alpha=0$ is only random teleportation (completely ignores the link structure) so it is a trade off accuracy for efficiency.
(Changes to α change the Google matrix which changes the resulting dominant eigenvector)

PageRank as Power Iteration

PageRank is a special case of power iteration (or power method) for solving general eigenvector problems.
It has many theoretical implications and extensions and applications beyond ranking of web pages, for example as a recommender system for servieces like Facebook, Twitter, Amazon, etc.

Linear Systems of Equations

$$
A x=b
$$

Fluid animations require solving linear system of more than one million unknowns for each frame. 10 seconds of video at 30 frames per second requires around 300 linear systems with size $1,000,000^{2}$ each.

We will use Gaussian Elimination however the way we will interpret it will be slightly different:

- Factor matrix A into $A=L U$ where L and U are triangular
- Solve $L z=b$ for intermediate vector z (Forward Solve, L is lower triangular)
- solve $U x=z$ for x (Backword Solve, U is upper triangular)

Example: Gaussian Elimination as $L U$ Factorization. Consider the linear system:

$$
A x=b \quad \leftrightarrow \quad\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 2 \\
1 & 2 & -1
\end{array}\right] x=\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]
$$

Perform Gaussian elimination while keeping the multiplies of the row operations in the zeros:

$$
\begin{array}{r}
R_{2}:=R_{2}-(1) R_{1} \quad\left[\begin{array}{ccc:c}
1 & 1 & 1 & 0 \\
{[1]} & -3 & 1 & 4 \\
1 & 2 & -1 & 2
\end{array}\right] \\
R_{1}:=R_{3}-(1) R_{1} \quad\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
{[1]} & -3 & 1 & 4 \\
{[1]} & 1 & -2 & 2
\end{array}\right] \\
R_{3}:=R_{3}-\left(-\frac{1}{3}\right) R_{2} \quad\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
{[1]} & -3 & 1 & 4 \\
{[1]} & {[-1 / 3]} & -5 / 3 & 10 / 8
\end{array}\right]
\end{array}
$$

Now we have split matrix A into its $L U$ factorization:

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
X & 1 & 0 \\
X & X & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
X & X & X \\
0 & X & X \\
0 & 0 & X
\end{array}\right] \quad \rightarrow \quad L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -1 / 3 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -3 & 1 \\
0 & 0 & -5 / 3
\end{array}\right]
$$

To complete this solve we just use U and perform back substitution to find x

$$
\begin{aligned}
-\frac{5}{3} x_{3}=\frac{10}{3} & \Longrightarrow x_{3}=-2 \\
-3 x_{2}+x_{3}=4 & \Longrightarrow x_{2}=-2 \\
x_{1}+x_{2}+x_{3}=0 & \Longrightarrow x_{1}=4
\end{aligned}
$$

Notice L encodes some information about how it transformed b, which may be useful for solving $A x=b^{\prime}$

In general, if we are given the factorization $A=L U$ we do

$$
A x=b \quad \rightarrow \quad L U x=b \quad \rightarrow \quad L(U x)=b
$$

Then defining $z=U x$ we can solve using system in two steps:

- First solve $L z=b$ for z
- Then solve $U x=z$ for x

This is faster because L and U are both triangular.

Remark: Usually use Gaussian elimination directly on the matrix (rather than a system) to get $L U$.

An application of this is Polynomial fitting of $y=p(x)$, if only changing the y-values being interpolated we can factorize the Vandermonde matrix once and reuse it

$$
V=\left[\begin{array}{cccc}
1 & x_{1} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n-1}
\end{array}\right] \quad \vec{c}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] \quad \vec{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Permutation Matrix

An issue with out current methods is that numerical problems can occur when implemented in code:

```
For k = 1,...,n
    For i = k + 1,...,n
        mult := a_ik / a_kk # possible divide by (exactly or nearly) zero
        a_ik := mult
        for j = k+1,\ldots,n
            a_ij := a_ij - mult*a_kj
        EndFor
    EndFor
EndFor
```

Even when the diagonal entry $a_{k k}$ is close to zero then $a_{i k} / a_{k k}$ will produce a value large in magnitude which can cause large floating errors during subtraction (or an error when $a_{k k}=0$).

During Guassin elimination this is solved by swapping rows when its diagonal entry is zero, but for our nuermical implementations we will always swap to minimize floating point error incurred.

Strategy: Find a row with the largest mangnitude entry in the current column beneath the current row and swap those rows if larger than the current entry.

We don't make these swaps directly to A, instead we take P to be an identity matrix and swap its rows:

$$
A=\left[\begin{array}{ccc}
0.5 & 2 & 3 \\
1 & 4 & 2 \\
-3 & 2 & -1
\end{array}\right] \quad P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad P=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \rightarrow \quad P A=\left[\begin{array}{ccc}
-3 & 2 & -1 \\
1 & 4 & 2 \\
0.5 & 2 & 3
\end{array}\right]
$$

We call P the permutation matrix and now find the $L U$ factoriation of

$$
P A=L U
$$

This turns the linear system we are solving into $P A x=P b$ and we usually use $b^{\prime}=P b$ to get $L U x=b^{\prime}$.

Example: $L U$ Factoriation with Pivoting. Find $P A=L U$ factoriation for

$$
\left[\begin{array}{ccc}
1 & 4 & 5 \\
-2 & 3 & 3 \\
3 & 0 & 6
\end{array}\right]
$$

Initialize $P=I$ and notice for column 1 , row 3 has the largest value, so swap row 1 and row 3 :

$$
P=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
3 & 0 & 6 \\
-2 & 3 & 3 \\
1 & 4 & 5
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{ccc}
3 & 0 & 6 \\
{[-2 / 3]} & 3 & 7 \\
{[1 / 3]} & 4 & 3
\end{array}\right]
$$

For column 2, row 3 has largest value, so swap row 2 and row 3 :

$$
P=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
3 & 0 & 6 \\
{[1 / 3]} & 4 & 3 \\
{[-2 / 3]} & 3 & 7
\end{array}\right] \quad \rightarrow \quad\left[\begin{array}{ccc}
3 & 0 & 6 \\
{[1 / 3]} & 4 & 3 \\
{[-2 / 3]} & {[3 / 4]} & 19 / 4
\end{array}\right]
$$

Thus we arrive at

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 & 0 \\
-2 / 3 & 3 / 4 & 1
\end{array}\right] \quad U=\left[\begin{array}{ccc}
3 & 0 & 6 \\
0 & 4 & 3 \\
0 & 0 & 19 / 4
\end{array}\right] \quad P=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

L is lower unit triangular and U is upper triangular. We can verify $P A=L U$ for a sanity check.

To solve $A x=b$ we do

1. Compute $b^{\prime}=P b$ (multiply to permute b)
2. Solve $L z=b^{\prime}$ (forward solve)
3. Solve $U x=z$ (backward solve)

Using our $P A=L U$ factorization solve $A x=b$ for

$$
b=\left[\begin{array}{c}
4 \\
1 \\
-3
\end{array}\right]
$$

1. Compute $b^{\prime}=P b$

$$
P b=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
4 \\
1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]=b^{\prime}
$$

2. Solve $L z=b^{\prime}$

$$
L z=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 & 0 \\
-2 / 3 & 3 / 4 & 1
\end{array}\right] z=\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right] \quad \rightarrow \quad z=\left[\begin{array}{c}
-3 \\
4-\frac{1}{3}(-3)=5 \\
1-\frac{3}{4}(5)+\frac{2}{3}(-3)=-19 / 4
\end{array}\right]
$$

3. Solve $U x=z$

$$
U x=\left[\begin{array}{ccc}
3 & 0 & 6 \\
0 & 4 & 3 \\
0 & 0 & 19 / 4
\end{array}\right] x=\left[\begin{array}{c}
-3 \\
5 \\
-19 / 4
\end{array}\right] \quad \rightarrow \quad x=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

Notice that for step (1) we don't actually need to matrix muliply, we can just swap the rows
Scipy has a $L U$ factorization scipy. linalg.lu along with a triangular solve scipy.linalg.solve_triangular

Cost of Solving Linear Systems

We will measure the cost in total FLOPs: Floating Point OPerations
True operation count be hardware dependent (Ex: FMA (Fused Multiply Add) can be a single operation)
Remark: FLOPS is Floating Point OPerations per Second (which is not what we are looking for)

We will need two sum identities:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- FLOP count for $L U$ factorization

$$
\begin{aligned}
\sum_{k=1}^{n} \sum_{i=k+1}^{n}\left(1+\sum_{j=k+1}^{n} 2\right) & =\sum_{k=1}^{n} \sum_{i=k+1}^{n}(1+(n-(k+1)+1) 2) \\
& =\sum_{k=1}^{n} \sum_{i=k+1}^{n}(1+2 n-2 k) \\
& =\sum_{k=1}^{n}(n-k)(1+2 n-2 k) \\
& =\sum_{k=1}^{n}\left(2 k^{2}+k(-4 n-1)+\left(2 n^{2}+n\right)\right) \\
& =2 \frac{n(n+1)(2 n+1)}{6}+(-4 n-1) \frac{n(n+1)}{2}+n\left(2 n^{2}+n\right) \\
& =\frac{2 n^{3}}{3}+n^{2}+\frac{n}{3}-2 n^{3}-\frac{5 n^{2}}{2}-\frac{n}{2}+2 n^{3}+n^{2} \\
& =\frac{2 n^{3}}{3}-\frac{n^{2}}{2}-\frac{n}{6} \\
& =\frac{2 n^{3}}{3}+O\left(n^{2}\right)
\end{aligned}
$$

- FLOP count for triangular solve

$$
\begin{aligned}
\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} 2\right) & =n+\sum_{i=1}^{n} 2(n-(i+1)+1) \\
& =n+\sum_{i=1}^{n}(2 n-2 i) \\
& =n+2 n^{2}-2 \frac{n(n+1)}{2} \\
& =n+2 n^{2}-\left(n^{2}+n\right) \\
& =n^{2}
\end{aligned}
$$

Thus $L U$ factorization costs $\frac{2 n^{3}}{3}+O\left(n^{2}\right)$ FLOPs
Triangular solves cost $n^{2}+O(n)$ FLOPs each so total is $2 n^{2}+O(n)$
Factorization cost dominates when n is large, if given the factorization solving for RHS is relatively cheaper.

LU as Matrix Operations

Recall that the row operations can represented as matrices.
Example: row operation $R_{2}:=R_{2}-\left(\frac{a_{2,1}}{a_{1,1}}\right) R_{1}$ can be written as matrix

$$
M=\left[\begin{array}{ccc}
1 & 0 & 0 \\
--\frac{a_{2,1}}{a_{1,1}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \rightarrow \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 / 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{ccc}
2 & 3 & 4 \\
3 & 4 & -1 \\
-2 & 2 & 1
\end{array}\right]}_{A^{\text {old }}}=\underbrace{\left[\begin{array}{ccc}
2 & 3 & 4 \\
0 & -1 / 2 & -7 \\
-2 & 2 & 1
\end{array}\right]}_{A^{\text {new }}}
$$

Thus the process of LU factoriation can be viewed as a sequence of matrix multiplicaitons applied to A. These row operations create U, e.g. in the 3×3 case we have shown:

$$
M^{(3)} M^{(2)} M^{(1)} A=U
$$

Then we have

$$
A=\left(M^{(3)} M^{(2)} M^{(1)}\right)^{-1} U=\underbrace{\left(m^{(1)}\right)^{-1}\left(m^{(2)}\right)^{-1}\left(m^{(3)}\right)^{-1}}_{L} U
$$

The inverse of $M^{(i)}$ is the same matirx but with the off-diagonal entry negated

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 / 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 / 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

The effect of LU factoriation is to left-multiply A by matrices $M^{(k)}$ that comprise L^{-1} to produce U

$$
M^{(3)} M^{(2)} M^{(1)} A=L^{-1} A=U
$$

interleaving permutation matrices $P^{(k)}$ before each $M^{(k)}$ leads to the $P A=L U$ factorization.
Solving $A x=b$ by Inverting A
An obvious alternative for solving $A x=b$ is to invert A to get A^{-1} then find $A^{-1} b=x$
To invert A we can do

- Factor A into $A=L U$ as usual
- Find columns of A^{-1} by solving $L U x=e_{i}$ for $i=1, \ldots, n$

The cost to invert is one LU factorization and n pairs of triangular solves, then we need to add the cost of multiplying $A^{-1} b$.

Not only is it slow but this method will also incur more floating point error.
As a general rule of thumb: most numerical algorithsm avoid ever computing A^{-1}

Norms and Conditioning

We will see the relationship between the norm and conditioning of a matrix.

- Norms are measurement of size/magnitude of vectors or matrices
- Conditioning describes how the output of a matrix changes with a change to input

Vector Norms

For a vector $x=\left[x_{1}, \ldots, x_{n}\right]^{T}$ some common choices of norms are:

- 1-norm (Manhatten norm):

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

- 2-norm (Euclidean norm)

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

- ∞-norm (max norm)

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

We can collect all these the p-norm, for $p=1,2, \infty$, which is written as:

$$
\|x\|_{p}=\left(\sum_{i=i}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

(in the ∞ case this only holds for the limit of the RHS)

Some key properties of norms:

- If the norm is zreo, then the vector must be the zero-vector

$$
\|x\|=0 \quad \Longrightarrow \quad x_{i}=0 \forall i
$$

- The scaling the vector must scale the norm by the same amount

$$
\|\alpha x\|=|\alpha| \cdot\|x\| \quad \text { for scalar } \alpha
$$

- The triangle inequality holds:

$$
\|x+y\| \leq\|x\|+\|y\|
$$

numpy.linalg.norm or scipy.linalg.norm implement vector (and matrix) norms

Matrix Norms

The standard matrix norms are:

- 1-norm (max absolute column sum)

$$
\|A\|_{1}=\max _{j} \sum_{i=1}^{n}\left|A_{i j}\right|
$$

- 2-norm (spectral norm is related to eigenvalues)

$$
\|A\|_{2}=\sqrt{\text { max magnitude eigenvalue of } A^{T} A}
$$

- ∞-norm (max absolute row sum)

$$
\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|A_{i j}\right|
$$

- Frobenius norm

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}^{2}}
$$

Matrix norm properties:

$$
\begin{gathered}
\|A\|=0 \quad \Longleftrightarrow \quad A_{i j}=0 \forall i, j \\
\|\alpha A\|=|\alpha| \cdot\|A\| \quad \text { for scalar } \alpha \\
\|A+B\| \leq\|A\|+\|B\| \\
\|A \vec{x}\| \leq\|A\| \cdot\|\vec{x}\| \\
\|A B\| \leq\|A\| \cdot\|B\| \\
\|I\|=1
\end{gathered}
$$

Conditioning of Linear Systems

Conditioning describes how the output of changes with some change in input. It shows how difficult it is to find a good solution to a problem, independent of the algorithm/numerical method used.

When solving a linear system $A x=b$ how much does a perturbation of b or A cause solution x to change:

- Well-conditioned if x changes little
- Ill-conditioned if x changes lots

Example: finding the intersection between two lines

- Well-conditioned case: lines are nearly perpendicular

- Ill-conditioned case: lines are nearly parallel
- a small change in the angle of one line can really change where the intersection is.

Conditioning derivations:

- Perturbing b in the system $A x=b$

$$
A(x+\Delta x)=b+\Delta b \quad \rightarrow \quad A \Delta x=\Delta b \quad \rightarrow \quad \Delta x=A^{-1} \Delta b
$$

1. Apply norm rules to $A x=b$

$$
\|b\|=\|A x\| \leq\|A\| \cdot\|x\| \quad \rightarrow \quad \frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|}
$$

2. Apply norm rules to $\Delta x=A^{-1} \Delta b$

$$
\|\Delta x\|=\left\|A^{-1} \Delta b\right\| \leq\left\|A^{-1}\right\| \cdot\|\Delta b\| \quad \rightarrow \quad\|\Delta x\| \leq\left\|A^{-1}\right\| \cdot\|\Delta b\|
$$

Combine (1) and (2) by multiplication

$$
\frac{1}{\|x\|} \cdot\|\Delta x\| \leq \frac{\|A\|}{\|b\|} \cdot\left\|A^{-1}\right\| \cdot\|\Delta b\| \quad \rightarrow \quad \frac{\|\Delta x\|}{\|x\|} \leq\left\|A^{-1}\right\| \cdot\|A\| \cdot \frac{\|\Delta b\|}{\|b\|}
$$

Letting $\kappa=\left\|A^{-1}\right\| \cdot\|A\|$ we have

$$
\frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|}
$$

- Perturbing A in the system $A x=b$

$$
(A+\Delta A)(x+\Delta x)=b \quad \rightarrow \quad A x+A \Delta x+\Delta A(x+\Delta x)=b
$$

Subtract off $A x=b$ and rearrange

$$
A \Delta x=-\Delta A(x+\Delta x) \quad \rightarrow \quad \Delta x=-A^{-1} \Delta A(x+\Delta x)
$$

Take the norms and apply the norm rules

$$
\|\Delta x\| \leq\left\|A^{-1}\right\| \cdot\|\Delta A\| \cdot\|x+\Delta x\|
$$

Multiply by $1=\frac{\|A\|}{\|A\|}$, rearrange, then let $\kappa=\left\|A^{-1}\right\| \cdot\|A\|$ to get

$$
\frac{\|\Delta x\|}{\|x+\Delta x\|} \leq \kappa(A) \frac{\|\Delta A\|}{\|A\|}
$$

The conditioning number of a matrix A is denoted $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$

$$
\begin{array}{cl}
\kappa \approx 1 \quad \rightarrow \quad A \text { is well-conditioned } \\
\kappa \gg 1 & \rightarrow A \text { is ill-conditioned }
\end{array}
$$

Any norm will work, however, different norms will give a different κ (condition number).
A useful property of vector/matrix norms is equivalence which states they do not different from one another by more than a constant factor:

$$
C_{1}\|x\|_{a} \leq\|x\|_{b} \leq C_{2}\|x\|_{a}
$$

for some constants C_{1}, C_{2}.

Residual

As a proxy for error we often using the residual r

$$
r=b-A\left(x_{\text {approx }}\right)
$$

the exact solution $\left(x_{\text {approx }}=x\right)$ should give $r=0$
This residual r can be easily computed (unlike the error) but how does it relate to error?

- Theme $x_{\text {approx }}=x+\Delta x$ then

$$
r=b-A(x+\Delta x) \quad \rightarrow \quad A(x+\Delta x)=b-r
$$

- r looks like a perturbation of b, so applying the earlier bound using $\Delta b=r$ we have

$$
\frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|} \quad \rightarrow \quad \frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

The solution's relative error $\frac{\|\Delta x\|}{\|x\|}$ is bound by κ times the relative size of residual r w.r.t. b
Thus if we roughly know A 's condition number $\left(\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|\right)$ then the computed residual indicates how large the error can be (in the worst case).

- if $\kappa \approx 1$ then a small residual indicates a small relative error
- if κ is large, small residual can still mean error is large

Many algorithms for solving $A x=b$ are iterative (rather than direct like LU/Gaussian elimination)
Itertive methods update an estimate until the residual dictates the solution is good enough.
(CS 475 for more iterative and direct schemes, entire semester on this last two topics)

Gaussian Elimination Error

$A x=b$ is quite stable and accurate but not exact, Wilkinson [1961] showed that GE's numerical result \hat{x} gives the exact solution to a nearby problem:

$$
(A+\Delta A) \hat{x}=b
$$

where E is machine epsilon and $\|\Delta A\|=\|A\| E$
Applying our earlier bound gets us

$$
\frac{\|\Delta x\|}{\|x+\Delta x\|} \leq \kappa(A) \frac{\|\Delta A\|}{\|A\|} \quad \rightarrow \quad \frac{\|x-\hat{x}\|}{\|\hat{x}\|} \leq \kappa(A) \frac{\|\Delta A\|}{\|A\|}=\kappa(A) \frac{\|A\| E}{\|A\|}=\kappa(A) E
$$

Example: if $\kappa(A)=10^{10}$ and $E=10^{-16}$ then relative error is around 10^{-6} or around 6 significant digits of accuracy.

Always remember that conditioning is a property of the problem, that is a system $A x=b$ is well/illconditioned independent of how we choose to solve it.

