CS240E: Data Structures and Data Management (Enriched)
 University of Waterloo
 Instructor: Armin Jamshidpey

Winter 2023

Andrew Wang

Table of Contents

Asymptotic Analysis 6
Algorithm Efficiency 6
Experimental Studies 6
Random Access Machine (RAM) Model 7
Computational Model: Word RAM 7
Order Notation 8
Algebra of Order Notations 9
Techniques for Order Notation 9
Growth Rate 10
Relationships Between Order Notations 11
Algorithm Analysis 11
Complexity of Algorithms 12
Recursive Algorithm Analysis 12
Mergesort 12
Analysis of MergeSort 13
The Master Method 14
Useful Recurrence Relations 15
Other Useful Formulas 16
Priority Queues 17
Abstract Data Type (ADT) 17
Stack ADT 17
Queue ADT 17
Priority Queue ADT 17
Binary Heaps 18
Storing Heaps in Arrays 19
insert Operation 20
deleteMax Operation 20
Priority Queue Realization Using Heaps 21
Heapify 21
Heapsort 23
Mergeable Heaps 25
PQ Merge Operation 25
Meldable Heaps 25
Binomial Heaps 28
Sorting, Average-case, and Randomization 31
Average-case Analysis 31
Sorting Permutations 31
Example: Average-case Run-time of avgCaseDemo 32
Randomized Algorithms 33
Expected Running Time 33
Example: Expected Running Time of expectedDemo 34
QuickSelect 34
The Selection Problem 34
Subroutines 35
QuickSelect Algorithm 36
Randomized QuickSelect 37
Expected Run-time vs Average-case Run-time 39
QuickSort 40
QuickSort Analysis 40
QuickSort Improvements 41
Comparison-based Sorting Lower Bound 42
The Comparison Model 42
Decision Trees 42
Lower Bound for Sorting in the Comparison Model 43
Non-comparsion-based Sorting 44
Bucket Sort 44
MSD Radix Sort 46
LSD Radix Sort 47
Dictionaries 47
Binary Search Tree (BST) 48
AVL Tree 49
AVL Tree Height 50
AVL Rebalance 52
AVL Insertion 54
AVL Deletion 55
AVL Tree Operations Runtime 56
Amortized Analysis 56
Scapegoat Trees 58
Scapegoat Tree Analysis 60
Skip Lists 62
Search in Skip Lists 63
Insert in Skip Lists 64
Delete in Skip Lists 66
Analysis of Skip Lists 67
Re-ordering Items 68
Static Ordering 68
Dynamic Ordering 68
More on Dictionaries 69
Expected height of BST 69
Treap 70
Treap Operations 70
Optimal Static BST 72
MTF-Heuristic for a BST 73
Splay tree 74
Dictionaries for Special Keys 77
Search 77
Lower Bound for Search 77
Binary Search 78
Interpolation Search 78
Trie 79
Trie Operations 79
Trie Variations 81
Compressed Trie Operations 82
Multiway Tries 84
Dictionaries Via Hashing 85
Direct Addressing 85
Hash Collisions 86
Chaining 87
Complexity of Chaining 88
Open Addressing 89
Linear Probing 90
Independent Hash Function 92
Double Hashing 92
Cuckoo Hashing 93
Summary of Open Addressing Strategies 95
Choosing a Good Hash Function 95
Carter-Wegman's Universal Hashing 96
Multi-Dimensional Data 96
Hashing vs Balanced Search Trees 97
Range Searches 97
Multi-Dimensional Data 98
Quadtrees 98
Quadtree Dictionary Operations 100
Quadtree Range Search 101
Quadtree Analysis 102
Quadtrees in Other Dimensions 102
Quadtree Summary 103
kd-Trees 103
Constructing a kd-Tree 103
kd-Tree Dictionary Operations 106
kd-Tree Range Search 106
kd-Tree in Higher Dimensions 107
Range Trees 107
Range Tree Dictionary Operations 109
BST Range Search 109
Range Tree Range Search 110
Range Trees in Higher Dimensions 113
Summary of Range Search Data Structures 113
String Matching 114
Brute-Force Algorithm 115
Improving Brute Force 115
Karp-Rabin Algorithm 116
Boyer-Moore 117
Reverse Order Searching 117
Bad Character Heuristic 117
Good Suffix Heuristic 119
Boyer-Moore Summary 119
Knuth-Morris-Pratt (KMP) Algorithm 120
String Matching with Finite Automata 120
KMP Algorithm 120
KMP Failure Array 121
KMP Runtime 122
Suffix Trees 122
Suffix Array 123
String Matching Summary 124

Asymptotic Analysis

In earlier CS courses the emphasis was on program correctness, however, in this course we will shift the focus to efficiency (typically in terms of processor time).
We will study methods of managing large collections of data (adding, deleting, searching, and sorting). This course will mainly use pseudo-code and place emphasis on mathematical analysis.

- Problem: given a problem instance, carry out a computational task
- Problem Instance: input for the specified problem
- Problem Solution: (correct) output for the specified problem instance
- Size of problem instance: Size(I) a positive integer which which measures size of the instance I
- Algorithm: a step-by-step process on arbitrary problem instance I (discribed in pseudo-code)
- Program: implementation of an algorithm using a programming language

Algorithm \mathcal{A} solves a problem Π if, for every instance I of Π, \mathcal{A} finds a valid solution in finite time.

For a problem Π there can be many possible algorithms.
For an algorithm \mathcal{A} solving Π there can be many possible programs (implementations).
In practice to solve a problem Π :

1. Design an algorithm \mathcal{A} that solves Π (Algorithm Design)
2. Assess correctness and efficiency of \mathcal{A} (Algorithm Analysis)
3. If acceptable (correct and efficient), implement \mathcal{A}

Algorithm Efficiency

- Running Time: amount of time for program to complete (primary concern for this course)
- Auxiliary Space: amount of additional memory the program requires

Both of these depend on the Size(I) (size of given problem instance I)

How do we actually measure and compare algorithm/program efficiency for a given problem?

Experimental Studies

One option is to implement the algorithm then time the runtime of the program with inputs of varying size and composition. However there are many shortcomings to this approach:

- Implementation and testing can be complicated/costly
- Timings are affected by many factors:
- Hardware: speed of processor/memory, special CPU instructions, CPU architecture, etc
- Software Environment: OS, compiler, programming language, etc
- Human Factors: quality of programmer
- Impossible to test all inputs, so need to find representative sample inputs?

With so many factors to consider it is not easy to compare two algorithms/programs using this method.

Random Access Machine (RAM) Model

To generalize we use pseudo-code, count primitive operations instead of time, and measure efficiency by growth rate of these operations relative to input size.

The Random Access Machine (RAM) model is an idealized computer model

- Set of memory cells, each storing one item of data
- Implicit assumption: memory cells are big enough to hold items that we store
- Any access to memory location takes constant time
- Any primitive operation takes constant time
- Running time is proportional to number of memory accesses plus number of primitive operations

Note that these assumptions may not hold for a real computer.

Computational Model: Word RAM

- Memory locations contain interger words of b bits each
- Assume $b \geq \log (n)$ for input size n (always assume $\log _{2}$ for \log)
- Random Access Memory: can access any memory location at unit cost
- Basic operations on single words have unit costs

Example 1:

```
Sum(A[1...n])
    s <- 0
    for i = 1,...,n
        s <- s + A[i]
```

Performing $s+A[i]$ the length of the result is at most $n+1$, so at the end s will be at most of size $2 n$. Thus we can say that runtime will be linear since word size scales linearly.

Example 2:

```
Product(A[1...n])
    s <- 0
    for i = 1,...,n
        s <- s x A[i]
```

When performing $s \times A[i]$ the length of the result is at most $2 n$, so at the end s will be at most of size n^{2}. Thus we can say that runtime will be non-linear since word size scales quadratically.

In this course we will treat multiplication as a constant time operation, but note that it does not actually behave that way.

Order Notation

Note: absolute values signs are irrelevant for run-time or space analysis in this course, but can be useful in other applications of these definitions. (i.e. they can be ignored for this course)

- O-notation: $f(n) \in O(g(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
|f(n)| \leq c|g(n)| \quad \text { for all } n \geq n_{0}
$$

- Ω-notation: $f(n) \in \Omega(g(n))$ if there exists constants $c>0$ and $n_{0} \geq 0$ such that

$$
|f(n)| \geq c|g(n)| \quad \text { for all } n \geq n_{0}
$$

- Θ-notation: $f(n) \in \Theta(g(n))$ if there exists constants $c_{1}, c_{2}>0$ and $n_{0} \geq 0$ such that

$$
c_{1}|g(n)| \leq|f(n)| \leq c_{2}|g(n)| \quad \text { for all } n \geq n_{0}
$$

- o-notation: $f(n) \in o(g(n))$ if for all constants $c>0$, there exists a constant $n_{0} \geq 0$ such that

$$
|f(n)| \leq c|g(n)| \quad \text { for all } n \geq n_{0}
$$

- ω-notation: $f(n) \in \omega(g(n))$ if for all constants $c>0$, there exists a constant $n_{0} \geq 0$ such that

$$
|f(n)| \geq c|g(n)| \quad \text { for all } n \geq n_{0}
$$

It directly follows that:

$$
f(n) \in \Theta(g(n)) \quad \Longleftrightarrow \quad f(n) \in O(g(n)) \text { and } f(n) \in \Omega(g(n))
$$

Examples: proofs from first principles

- $\frac{1}{2} n^{2}-5 n \in \Omega\left(n^{2}\right)$. Begin by spliting up the $\frac{1}{2} n^{2}$ term:

$$
\frac{1}{2} n^{2}-5 n=\frac{1}{4} n^{2}+\underbrace{\left(\frac{1}{4} n^{2}-5 n\right.}_{\text {show } \geq 0}) \rightarrow \frac{1}{4} n^{2}-5 n \geq 0 \quad \rightarrow \quad n \geq 20
$$

When $n \geq 20$ the second term is greater than 0 so we get $n_{0}=20$ and $c=\frac{1}{4}$

$$
\frac{1}{2} n^{2}-5 n \geq \frac{1}{4} n^{2} \quad \text { for all } n \geq 20
$$

- $\log _{b}(n) \in \Theta(\log n)$ for all $b>1$ can be proved by using the \log change of base rule

$$
\log _{b}(n)=\frac{\log n}{\log b} \quad \rightarrow \quad \frac{\log n}{\log b} \leq \log _{b}(n) \leq \frac{\log n}{\log b} \quad \rightarrow \quad c_{1}=c_{2}=\frac{1}{\log b}
$$

to be more formal we could show $\log _{b} n \in O(\log n)$ and $\log _{b} n \in \Omega(\log n)$

- $2000 n^{2} \in o\left(n^{n}\right)$. Begin by letting $c>0$, find $n_{0} \geq 0$ (which depends on c) such that if $n \geq n_{0}$

$$
2000 n^{2} \leq c n^{n} \quad \rightarrow \quad 2000 \leq c n^{n-2}
$$

Notice that when $n \geq 3$ then $n \leq n^{n-2}$. If we also take $n \geq \frac{2000}{c}$ then

$$
\frac{2000}{c} \leq n \leq n^{n-2} \quad \rightarrow \quad 2000 \leq c n^{n-2}
$$

To ensure that both $n \geq 3$ and $n \geq \frac{2000}{c}$ we have

$$
n_{0}=\max \left\{3, \frac{2000}{c}\right\}
$$

Algebra of Order Notations

- Identity rule: $f(n) \in \Theta(f(n))$
- Transitivity:

$$
\begin{aligned}
& f(n) \in O(g(n)) \text { and } g(n) \in O(h(n)) \quad \Longrightarrow \quad f(n) \in O(h(n)) \\
& f(n) \in \Theta(g(n)) \text { and } g(n) \in \Theta(h(n)) \quad \Longrightarrow \quad f(n) \in \Theta(h(n))
\end{aligned}
$$

- Maximum rules: Suppose that $f(n)>0$ and $g(n)>0$ for all $n \geq n_{0}$, then:

$$
\begin{aligned}
& f(n)+g(n) \in O(\max \{f(n), g(n)\}) \\
& f(n)+g(n) \in \Theta(\max \{f(n), g(n)\})
\end{aligned}
$$

Proof: $\max \{f(n), g(n)\} \leq f(n)+g(n) \leq 2 \max \{f(n), g(n)\}$

Techniques for Order Notation

Suppose that $f(n)>0$ and $g(n)>0$ for all $n \geq n_{0}$. Suppose that

$$
L=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

If the limit exists then

$$
f(n) \in \begin{cases}o(g(n)) & \text { if } L=0 \\ \Theta(g(n)) & \text { if } 0<L<\infty \\ \omega(g(n)) & \text { if } L=\infty\end{cases}
$$

Note: this result is a sufficient (but not necessary) condition for the stated conclusions to hold.

This technique will often be computed using l'Hôpital's rule:

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0 \text { or } \pm \infty \quad \text { and } \quad \lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)} \text { exists } \quad \Longrightarrow \quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

To emphasize this is only valid if both denominator and numerator tend to 0 or $\pm \infty$

Example: prove $n(2+\sin n \pi / 2) \in \Theta(n)$. Note that $\lim _{n \rightarrow \infty}(2+\sin n \pi / 2)$ does not exist.

$$
\begin{aligned}
-1 \leq \sin (n \pi / 2) \leq 1 & \Longrightarrow \quad 1 \leq 2+\sin (n \pi / 2) \leq 3 \\
& \Longrightarrow \quad n \leq n(2+\sin (n \pi / 2)) \leq 3 n
\end{aligned}
$$

Example: (using l'Hôpital's rule) compare the growth rates of $\log n$ and n

$$
\lim _{n \rightarrow \infty} \frac{\log n}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 \quad \rightarrow \quad \log n \in o(n)
$$

Now compare the growth rates of $\log ^{c} n$ and n^{d} for arbitrary $c>0$ and $d>0$

$$
\lim _{n \rightarrow \infty} \frac{\log ^{c} n}{n^{d}}=\lim _{n \rightarrow \infty}\left(\frac{\log n}{n^{\frac{d}{c}}}\right)^{c}=\left(\lim _{n \rightarrow \infty} \frac{\log n}{n^{\frac{d}{c}}}\right)^{c}=\left(\lim _{n \rightarrow \infty} \frac{1}{\frac{d}{c} n^{\frac{d}{c}}}\right)^{c}=0 \quad \rightarrow \quad \log ^{c} n \in o\left(n^{c}\right)
$$

Growth Rate

Typically $f(n)$ may be complicated while $g(n)$ is chosen to be simple

- If $f(n) \in \Theta(g(n))$ then growth rates of $f(n)$ and $g(n)$ are the same
- If $f(n) \in o(g(n))$ then $f(n)$ growth rate is less than $g(n)$ growth rate
- If $f(n) \in \omega(g(n))$ then $f(n)$ growth rate is greater than $g(n)$ growth rate

The common growth rates (in increasing order of growth rate):

- $\Theta(1)$ constant complexity
- $\Theta(\log n)$ logarithmic complexity
- $\Theta(n)$ linear complexity
- $\Theta(n \log n)$ linearithmic
- $\Theta\left(n \log ^{k} n\right)$ quasi-linear (k is some constant)
- $\Theta\left(n^{2}\right)$ quadratic complexity
- $\Theta\left(n^{3}\right)$ cubic complexity
- $\Theta\left(2^{n}\right)$ exponential complexity

Example: how is running time $T(n)$ effected when the size of the problem instance doubles (i.e. $n \rightarrow 2 n$)

- constant complexity:

$$
T(n)=c \quad \rightarrow \quad T(2 n)=c
$$

- logarithmic complexity:

$$
T(n)=c \log n \quad \rightarrow \quad T(2 n)=T(n)+c
$$

- linear complexity:

$$
T(n)=c n \quad \rightarrow \quad T(2 n)=2 T(n)
$$

- linearithmic:

$$
T(n)=c n \log n \quad \rightarrow \quad T(2 n)=2 T(n)+2 c n
$$

- quadratic complexity:

$$
T(n)=c n^{2} \quad \rightarrow \quad T(2 n)=4 T(n)
$$

- cubic complexity:

$$
T(n)=c n^{3} \quad \rightarrow \quad T(2 n)=8 T(n)
$$

- exponential complexity:

$$
T(n)=c 2^{n} \quad \rightarrow \quad T(2 n)=(T(n))^{2} / c
$$

Relationships Between Order Notations

$$
\begin{aligned}
f(n) \in \Theta(g(n)) & \Longleftrightarrow g(n) \in \Theta(f(n)) \\
f(n) \in O(g(n)) & \Longleftrightarrow g(n) \in \Omega(f(n)) \\
f(n) \in o(g(n)) & \Longleftrightarrow g(n) \in \omega(f(n)) \\
f(n) \in o(g(n)) & \Longrightarrow f(n) \in O(g(n)) \text { and } f(n) \notin \Omega(g(n)) \\
f(n) \in \omega(g(n)) & \Longrightarrow f(n) \in \Omega(g(n)) \text { and } f(n) \notin O(g(n))
\end{aligned}
$$

Algorithm Analysis

Using asymptotic notation we can simplify run-time analysis by finding how the run-time of an algorithm depends on the input size n :

- Identify primitive operations that require $\Theta(1)$ time
- Complexity of a loop is expressed as the sum of the complexities of each iteration of the loop
- For nested loops we start by analyzing the innermost and proceeding outward (nested summation)

We have two general strategies:

- Strategy I: Use Θ-bounds throughout the analysis and obtain an Θ-bound for the algorithm
- Strategy II: Prove O-bound and a matching Ω-bound separately
- This is useful because upper/lower bounds are usually easier to sum

Example:

```
Test(A, n)
    max \leftarrow 0
    for i}\leftarrow1\mathrm{ to n do
        for j}\leftarrowi\mp@code{to n do
        sum \leftarrow0
        for k}\leftarrowi\mp@code{to j do
            sum}\leftarrowA[k
    return max
```

Let $T(n)$ be the runtime of Test. Then $T(n) \in \Theta(S(n))$ where $S(n)$ is the number of the times we execute sum $\leftarrow \mathrm{A}[\mathrm{k}]$

$$
\begin{gathered}
S(n) \leq \sum_{i=1}^{n} \sum_{y=1}^{n} \sum_{k=1} 1 \in O\left(n^{3}\right) \\
S(n) \geq \sum_{i=1}^{\frac{n}{3}} \sum_{j=i}^{n} \sum_{k=i}^{j} 1 \geq \sum_{i=1}^{\frac{n}{3}} \sum_{j=\frac{2 n}{3}}^{n} \sum_{k=i}^{j} 1 \geq \sum_{i=1}^{\frac{n}{3}} \sum_{j=\frac{2 n}{3}}^{n} \sum_{k=\frac{n}{3}}^{\frac{2 n}{3}} 1 \\
\geq\left(\frac{n}{3}\right)^{3} \Longrightarrow S(n) \in \Omega\left(n^{3}\right)
\end{gathered}
$$

Complexity of Algorithms

An algorithm can also have different running times on two problem instances of the same size:

```
// A: array of size n
Test(A, n)
    for i}\leftarrow1\mathrm{ to n - 1 do
        j}\leftarrow
        while j > 0 and A[j] < A[j - 1] do
            swap A[j] and A[j - 1]
            j}\leftarrowj-
```

Let $T_{\mathcal{A}}(I)$ denote running time of the algorithm \mathcal{A} on instance I :

- Worst-case complexity of an algorithm: function $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ mapping n to longest running time of \mathcal{A} for all input instances of size n :

$$
T_{\mathcal{A}}(n)=\max \left\{T_{\mathcal{A}}: \operatorname{Size}(I)=n\right\}
$$

- Average-case complexity of an algorithm: function $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ mapping n to average running time of \mathcal{A} over all instances of size n :

$$
T_{\mathcal{A}}^{\text {avg }}(n)=\frac{1}{|\{I: \operatorname{Size}(I)=n\}|} \sum_{\{I: \operatorname{Size}(I)=n\}} T_{\mathcal{A}}(I)
$$

Note: it is important to avoid making comparisons between algorithms using O-notation (compare using Θ-notation instead)

- Say we have algorithm \mathcal{A}_{1} with worst-case run-time $O\left(n^{3}\right)$ and \mathcal{A}_{2} with worst-case run-time $O\left(n^{2}\right)$
- We cannot say \mathcal{A}_{2} is more efficient than \mathcal{A}_{1} because:

1. Worst-case run-time could could be extremely rare
2. O-notation is an upper bound. \mathcal{A}_{1} could have a worst-case run-time of $O(n)$.

Recursive Algorithm Analysis

Mergesort

Input: Array A of n integers

1. Split A into two subarrays:

- A_{L} consists of first $\left\lceil\frac{n}{2}\right\rceil$ elements in A
- A_{R} consists of last $\left\lfloor\frac{n}{2}\right\rfloor$ elements of A

2. Recursively run MergeSort on A_{L} and A_{R}
3. After A_{L} and A_{R} are sorted, merge into into a single sorted array using Merge
```
// A: array of size n, 0}\leq\ell\leqr\leqn - 1
MergeSort(A, n, \ell \leftarrow0,r \leftarrown - 1, S \leftarrowNIL)
    if S is NIL initialize it as array S[0..n - 1]
    if (r m ) then
        return
    else
        m = (r + \ell)/2
        MergeSort(A, n, \ell, m, S)
        MergeSort(A, n, m + 1,r, S)
        Merge(A, \ell, m, r, S)
```

This uses two tricks to reduce run-time and auxiliary space:

- Recursion uses parameters that indicate range of array that needs to be sorted
- Array used for copying is passed along as a parameter

```
// A[0..n - 1] is an array, A[\ell..m] is sorted, A[m + 1..r] is sorted
// S[0..n - 1] is an array
Merge(A, \ell, m, r, S)
    copy A[\ell..r] into S[\ell..r]
    int iL \leftarrow\ell; int iR \leftarrowm + 1;
    for (k \leftarrow\ell; k\leqr; k++) do
        if (iL > m) A[k] \leftarrow S[iR++]
        else if (iR > r) A[k] \leftarrow S[iL++]
        else if (S[iL] \leq S[iR]) A[k] \leftarrow S[iL++]
        else A[k] \leftarrow S[iR++]
```

Merge takes $\Theta(r-\ell+1) \rightarrow \Theta(n)$ time to merge n elements

Analysis of MergeSort

Let $T(n)$ denote the time to run MergeSort on an array of length n

- Step 1 takes time $\Theta(n)$
- Step 2 takes time $T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$
- Step 3 takes time $\Theta(n)$

The recurrence relation for $T(n)$ is:

$$
T(n)= \begin{cases}T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\Theta(n) & \text { if } n>1 \\ \Theta(1) & \text { if } n=1\end{cases}
$$

We then convert this to an exact recurrence by replacing Θ 's with constant factor c :

$$
T(n)= \begin{cases}T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+c n & \text { if } n>1 \\ c & \text { if } n=1\end{cases}
$$

This can be turned to a sloppy recurrence if we remove the floors and ceilings:

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c n & \text { if } n>1 \\ c & \text { if } n=1\end{cases}
$$

By default in this course we can always convert to a sloppy recurrence (except when explicity told not to)

- When n is a power of 2 the exact and sloppy recurrences are identical
- While it is possible to show that $T(n) \in \Theta(n \log n)$ by analyzing the exact recurrence it is easier to use the sloppy recurrence

Example: analysis of MergeSort using the sloppy recurrence

The Master Method

The Master Theorem provides a formula to find the solution of many common recurrence relations found when analyzing divide-and-conquer algorithms. We will only look at a simplified version.
Theorem (Master Theorem): suppose that $a \geq 1$ and $b>1$ then for the recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+\Theta\left(n^{y}\right)
$$

in sloppy or exact form. Denote $x=\log _{b} a$ then

$$
T(n) \in \begin{cases}\Theta\left(n^{x}\right) & \text { if } y<x \\ \Theta\left(n^{x} \log n\right) & \text { if } y=x \\ \Theta\left(n^{y}\right) & \text { if } y>x\end{cases}
$$

Since we must show recursion steps we won't actually be using this much in this course.

Proof: (ISSUES IN THIS PROOF)

Then letting $r=\frac{a}{b^{y}}$ we have a total

$$
\begin{aligned}
d a^{j}+c n^{y} \sum_{i=0}^{j-1}\left(\frac{a}{b^{y}}\right)^{i} & =d a^{\log _{b} n}+c n^{y} \sum_{i=0}^{j-1} r^{i} \\
& =d n^{\log _{b} a}+c n^{y} \sum_{i=0}^{j-1} r^{i} \\
& =d n^{x}+c n^{y} \sum_{i=0}^{j-1} r^{i}
\end{aligned}
$$

Then we have 3 cases:

- $r=1$

$$
\begin{gathered}
b^{y}=a \quad \rightarrow \quad \log _{b} b^{y}=\log _{b} a=x \quad \rightarrow \quad y=x \\
\sum_{i=0}^{j-1} r^{i}=j=\log _{b} h \quad \Longrightarrow \quad \text { Total: } d n^{x}+c n^{y} \log _{b} n \in \Theta\left(n^{x} \log n\right)
\end{gathered}
$$

- $r<1$

$$
\begin{aligned}
b^{y}>a & \rightarrow \quad y>x \\
\sum_{i=0}^{j-1} r^{i} \in \Theta(1) & \Longrightarrow \quad \text { Total: } d n^{x}+c n^{y} \in \Theta\left(n^{y}\right)
\end{aligned}
$$

- $r>1$

$$
\begin{gathered}
b^{y}<a \quad \rightarrow \quad y<x \\
\sum_{i=0}^{j-1} r^{i} \in \Theta\left(r^{j}\right) \quad \rightarrow \quad r^{j}=r^{\log _{b} n}=n^{\log _{b} n}=n^{\log _{b} b^{x-y}}=n^{x-y} \\
\Longrightarrow \quad \text { Total: } d n^{x}+c n^{y}\left(n^{x-y}\right)=d n^{x}+c n^{x} \in \Theta\left(n^{x}\right)
\end{gathered}
$$

Useful Recurrence Relations

Once you know the result proving using induction is easy. Note that $0<c<1$.

Recursion	Resolves to	Example
$T(n)=T(n / 2)+\Theta(1)$	$T(n) \in \Theta(\log n)$	Binary search
$T(n)=2 T(n / 2)+\Theta(n)$	$T(n) \in \Theta(n \log n)$	Mergesort
$T(n)=2 T(n / 2)+\Theta(\log n)$	$T(n) \in \Theta(n)$	Heapify
$T(n)=T(c n)+\Theta(n)$	$T(n) \in \Theta(n)$	Selection
$T(n)=2 T(n / 4)+\Theta(1)$	$T(n) \in \Theta(\sqrt{n})$	Range Search
$T(n)=T(\sqrt{n})+\Theta(\sqrt{n})$	$T(n) \in \Theta(\sqrt{n})$	Interpol. Search
$T(n)=T(\sqrt{n})+\Theta(1)$	$T(n) \in \Theta(\log \log n)$	Interpol. Search

Other Useful Formulas

- Arithmetic Sequence:

$$
\sum_{i=0}^{n-1} i \rightarrow \sum_{i=0}^{n-1}(a+d i)=a n+\frac{d n(n-1)}{2} \in \Theta\left(n^{2}\right) \quad \text { if } d \neq 0
$$

- Geometric Sequence:

$$
\sum_{i=0}^{n-1} 2^{i} \rightarrow \sum_{i=0}^{n-1} a r^{i}= \begin{cases}a \frac{r^{n}-1}{r-1} \in \Theta\left(r^{n-1}\right) & \text { if } r>1 \\ a n \in \Theta(n) & \text { if } r=1 \\ a \frac{1-r^{n}}{1-r} \in \Theta(1) & \text { if } 0<r<1\end{cases}
$$

- Harmonic Sequence:

$$
\sum_{i=1}^{n} \frac{1}{i} \quad \rightarrow \quad \sum_{i=1}^{n} \frac{1}{i}=\ln n+\gamma+o(1) \in \Theta(\log n)
$$

- Other Sequences:

$$
\begin{gathered}
\sum_{i=1}^{n} \frac{1}{i^{2}} \quad \rightarrow \quad \sum_{i=1}^{n} \frac{1}{i^{2}}=\frac{\pi^{2}}{6} \in \Theta(1) \\
\sum_{i=1}^{n} i^{k} \rightarrow \quad \sum_{i=1}^{n} i^{k} \in \Theta\left(n^{k+1}\right) \quad \text { for } k \geq 0
\end{gathered}
$$

Logarithms:

- In this course $\log a$ always means $\log _{2} a$
- Basic rules:

$$
c=\log _{b} a \Longleftrightarrow b^{c}=a \quad \log a c=\log a+\log c \quad \log a^{c}=c \log a
$$

- Change of base:

$$
\log _{b} a=\frac{\log _{c} a}{\log c}=\frac{1}{\log _{a} b} \quad a^{\log _{b} c}=c^{\log _{b} a}
$$

- Concavity:

$$
\alpha \log x+(1-\alpha) \log y \leq \log (\alpha x+(1-\alpha) y) \quad \text { for } 0 \leq \alpha \leq 1
$$

Factorial:

$$
\begin{gathered}
n!:=n(n-1)(n-2) \cdots 2 \cdot 1=\# \text { of ways to permute } n \text { elements } \\
\quad \log (n!)=\log n+\log (n-1)+\cdots+\log 2+\log 1 \in \Theta(n \log n)
\end{gathered}
$$

Linearity of expectation:

$$
E[a X]=a E[X] \quad E[X+Y]=E[X]+E[Y]
$$

Priority Queues

Abstract Data Type (ADT)

Definition: an abstract data type (ADT) is a description of information and a collection of operations on that information (information is only accessed through the given operations)

There can be various realizations of a ADT, which specify:

- How information is stored (data strucutre)
- How operations are performed (algorithms)

Note: an integer is an ADT

Stack ADT

Definition: a stack is an ADT consisting of a collection of items with operations:

- push: insert an item
- pop: remove (and typically returning) most recently inserted item

Items are removed in LIFO (last-in first-out) order (items enter at the top and are removed from the top)
Extra operations: size, isEmpty, top
The Stack ADT can be realized using an array or a linked list.

Queue ADT

Definition: a queue is an ADT consisting of a collection of items with operations:

- enqueue: insert an item
- dequeue: remove (and typically returning) the least recently inserted item

Items are removed in FIFO (first-in first-out) order (items enter at the rear and are removed from front)
Extra operations: size, isEmpty, and front
The Queue ADT can be realized using a (circular) array or a linked list.

Priority Queue ADT

Definition: a priority queue consists of a collection of items (each having a priority) with operations:

- insert: insert an item tagged with a priority
- deleteMax: remove and return the item of highest priority (also called extractMax or getmax)

The priority is also call key. The above definition is for a max-oriented priority queue, a min-oriented priority queue will use a deleteMin operation instead.

In both stacks and queues there is a implicit priority for each item that enters (stack gives highest priority to last element, queue gives lowest priority to last element).

We can use a priority queue to sort a list:

```
PQ-Sort(A[0..n - 1])
    initialize PQ to an empty priority queue
    for i \leftarrow 0 to n - 1 do
        PQ.insert(A[i])
    for i}\leftarrown-1 down to 0 do
        A[i] }\leftarrow\textrm{PQ}.deleteMax(
```

Run-time of this depends on how we implement the priority queue O (init $+n \cdot$ insert $+n \cdot$ deleteMax).

- Realization 1: unsorted array
- insert: $O(1)$
- deleteMax: $O(n)$
$P Q$-sort with this realization yields selection sort
- Realization 2: sorted array
- insert $O(n)$
- deleteMax: $O(1)$
$P Q$-sort with this realization yields insertion sort
Note: we assume dynamic arrays, i.e. expand by doubling as needed (amortized to $O(1)$ extra time)
Using these naive implementations of priority queue both require $O\left(n^{2}\right)$ to sort an array.

Realization 3 using heaps will allow us to do this much faster (see next section).

Binary Heaps

Definition: A binary tree is either:

- empty
- a node with two binary trees (left subtree and right subtree)

Any binary tree with n nodes has height at least $\log (n+1)-1 \in \Omega(\log n)$ (height of empty tree is -1)

Definition: a (binary) heap is a binary tree that obeys the following two properties:

- Structural Property: all levels of a heap are completely filled, except (possibly) for the last level which is filled from left to right
- Heap-order Property: for any node i, the key of the parent of i is larger than or equal to key of i full name for this is a max-oriented binary heap

Example: here is an example of a heap, notice how it obeys the structural and heap-order properties

Lemma: The height of a heap with n nodes is $\Theta(\log n)$
Proof: for a heap of height h we have

- at least $1+2+4+\cdots+2^{h-1}+1=2^{h}$
- at most $1+2+4+\cdots+2^{h-1}+2^{h}=2^{h+1}-1$

Let n be the number of nodes, then

$$
\begin{aligned}
2^{h} \leq n \leq 2^{h+1}-1 & \rightarrow 2^{h} \leq n \leq 2^{h+1} \\
& \rightarrow \quad h \leq \log n \leq h+1
\end{aligned}
$$

Using this we get

$$
\log n-1 \leq h \text { and } h \leq \log n \quad \rightarrow \quad \log n-1 \leq h \leq \log n
$$

Storing Heaps in Arrays

Heaps should not be stored in a binary tree!
Let H be a heap of n items and let A be an array of size n. Store the root in $A[0]$ and continue with elements level-by-level from top to bottom, in each level left-to-right.

Example: the ealier example of a heap stored in an array

To navigate this array representation of a heap (node and index are used interchangeably):

- root node: index 0
- last node: index $n-1$
- left child of node i : node $2 i+1$
- right child of node i : node $2 i+2$
- parent of node i : node $\left\lfloor\frac{i-1}{2}\right\rfloor$
- a node exists if its index falls in the range $\{0, \ldots, n-1\}$

We usually hide this implementation details using helper functions

- $\operatorname{root}(), \operatorname{last}(), \operatorname{left}(i), \operatorname{right}(i), \operatorname{parent}(i)$, etc.

Some of these helper-function need to know n but we omit it for simplicity.

insert Operation

Place the new key at the first free leaf then call fix-up to fix heap-order property.

```
// i: an index corresponding to a node of the heap
fix-up(A, i)
    while parent(i) exists and A[parent(i)].key < A[i].key do
        swap A[i] and A[parent(i)]
        i}\leftarrow\mathrm{ parent(i)
```

The new item bubbles up until it reaches its correct place in the heap.
Time: $O($ height of heap $)=O(\log n)$

Example:

deleteMax Operation

The root contains the maximum item of a heap:

1. Swap root node and last leaf
2. Remove last leaf and perform fix-down on the root node to fix heap-order property
```
// A: an array that stores a heap of size n
// i: an index corresponding to a node of the heap
fix-down(A, i, n \leftarrowA.size)
    while i is not a leaf do
        j}\leftarrowleft child of i // Find the child with the larger key
```

```
if (i has right child and A[right child of i].key > A[j].key)
    j }\leftarrow\mathrm{ right child of i
if A[i].key \geq A[j].key break
swap A[j] and A[i]
i}\leftarrow
```

The root node bubbles down until it reaches a correct place.
Time: O (height of heap) $=O(\log n)$

Example:

Priority Queue Realization Using Heaps

Store item in array A and globally keep track of size (size denotes the location of the last element):

```
insert(x)
    increase size
    \ell< last()
    A[\ell]}\leftarrow
    fix-up(A, \ell)
deleteMax()
    \ell last()
    swap A[root()] and A[\ell]
    decrease size
    fix-down(A, root(), size)
    return A[\ell]
```

Both insert and deleteMax take $O(\log n)$ time

Heapify

Convert a given array $A[0, \ldots, n-1]$ with n items into a heap:

- Solution 1: start with an empty heap and insert items one at a time:

```
// A: an array
simpleHeapBuilding(A)
    initialize H as an empty heap
```

```
for i \leftarrow0 to A.size() - 1 do
H.insert(A[i])
```

This coresponds to doing fix-ups and has a worst-case of $\Theta(n \log n)$

- Solution 2: use fix-downs instead:

```
// A: an array
heapify(A)
    n}\leftarrowA.size(
    for i \leftarrow parent(last()) downto root() do
        fix-down(A, i, n)
```

This has a worst-case complexity of $\Theta(n)$ which means we can build a heap in linear time.
This is all done in-place it does not require auxiliary space.

Example: notice that the fix-downs start at the bottom so later fix-downs will only require up to 1 swap

Heapsort

Notice that any priority queue can be sorted in time

$$
O(\text { initalization }+n \cdot \text { insert }+n \cdot \text { deleteMax })
$$

The naive implementation of sorting with heaps is:

```
PQsortWithHeaps(A)
    initialize H to an empty heap
    for i}\leftarrow0 to n - 1 do
        H.insert(A[i])
    for i}\leftarrow\textrm{n}-1\mathrm{ down to 0 do
        A[i] }\leftarrowH.deleteMax(
```

Using the heapify operation and a modification to deleteMax we arrive at Heapsort:

```
HeapSort(A, n)
    // heapify
    n}\leftarrowA.size(
    for i \leftarrow parent(last()) downto 0 do
        fix-down(A, i, n)
    // repeatedly find maximum
    while n > 1
        // 'delete' maximum by moving to end and decreasing n
        swap items at A[root()] and A[last()]
        decrease n
        fix-down(A,root(), n)
```

Both methods have runtime of $O(n \log n)$ however Heapsort can be done with $O(1)$ auxiliary space.

Example: continuing from the heapify example

The array underlying the heap is now in sorted order.

Mergeable Heaps

PQ Merge Operation

$\operatorname{merge}\left(P_{1}, P_{2}\right)$

- Input: two priority queues P_{1}, P_{2} of size n_{1}, n_{2}
- Output: one priority queue P that contains all their items

This will take $\Omega\left(\min \left\{n_{1}, n_{2}\right\}\right)$ if PQ is stored as array (since we need to copy at least one of them)

This can be done faster if PQ is stored as a tree, here are three approaches:

- Merge binary heaps (stored in a tree instead of array)
- $O\left(\log ^{3} n\right)$ worst-case time (no details)
- Merge meldable heaps that have heap-property but not structural property
- $O(\log n)$ expected run-time
- Merge binomial heaps that have heap-property but different structural property
- $O(\log n)$ worst-case run-time

Notice that both insert and deleteMax can be done by reduction to merge:

- P.insert (k, v)
- Create a 1-node heap P^{\prime} that stores (k, v) then merge P^{\prime} with P
- P.deleteMax ()
- Stash item at root and let P_{ℓ}, P_{r} be the left and right children of root
- Update $P \leftarrow \operatorname{merge}\left(P_{\ell}, P_{r}\right)$ then return the stashed item

Both operations have a run-time of O (merge)

Meldable Heaps

A meldable heap is a tree-based priority queue (nodes have references to left/right)

- Heap order property: parent not smaller than child
- No structural property: any binary tree is allowed

Idea: merge heap with smaller root into the other one by randomly choosing which sub-heap to merge.

```
// r1, r2: roots of two heaps (possibly NIL)
// returns root of merged heap
meldableHeap::merge(r1, r2)
    if r1 is NIL return r2
    if r2 is NIL return r1
    if r1.key < r2.key swap(r1, r2)
    // now r1 has max-key and becomes the root.
    randomly pick one child c of r1
    replace subheap at c by heapMerge(c, r2)
    return r1
```


Example:

Theorem: the expected runtime to merge two meldable heaps is $T(n) \in O(\log n)$
Proof: $T(n)=$ expected length of a random downward walk

- Claim: $T(n) \leq \log (n+1)$
- Base case: $n=1$ gives $T(1) \leq \log 2=1$
- Inductive step: for steps $n \geq 1$ let $R=<c, R^{\prime}>$ where
$-c$ is a coin flip at root
- R^{\prime} is the remaining outcomes
$-P(R)=P(c) P\left(R^{\prime}\right)$

$$
\left.\begin{array}{rl}
T^{\exp }(n) & =\max _{I \in \mathcal{I}_{n}} \sum_{R} P(R) T(I, R) \\
& =\sum_{c} \sum_{R^{\prime}} P(c) P\left(R^{\prime}\right) T\left(I,<c, R^{\prime}>\right) \\
& =\frac{1}{2} \sum_{R^{\prime}} P\left(R^{\prime}\right)\left(1+T\left(I_{\text {left }}, R^{\prime}\right)\right)+\frac{1}{2} \sum_{R^{\prime}} P\left(R^{\prime}\right)\left(1+T\left(I_{\text {right }}, R^{\prime}\right)\right) \\
& =\frac{1}{2} \sum_{R^{\prime}} P\left(R^{\prime}\right)\left(1+T^{\exp }\left(I_{\text {left }}, R^{\prime}\right)\right)+\frac{1}{2} \sum_{R^{\prime}} P\left(R^{\prime}\right)\left(1+T^{\exp }\left(I_{\text {right }}, R^{\prime}\right)\right) \quad \text { (unexplained) } \\
& =\max _{I}\left\{1+\frac{1}{2} T^{\exp }\left(n_{L}\right)+\frac{1}{2} T^{\exp }\left(n_{R}\right)\right\} \\
& =\max _{n_{L}+n_{R}=n-1}\left\{1+\frac{1}{2} T^{\exp }\left(n_{L}\right)+\frac{1}{2} T^{\exp }\left(n_{R}\right)\right\} \\
& \leq \max _{n_{L}+n_{R}=n-1}\left\{1+\frac{1}{2} \log \left(n_{L}+1\right)+\frac{1}{2} \log \left(n_{R}+1\right)\right\} \\
& \leq 1+\log \left(\frac{n+1}{2}\right)=\log (n+1)
\end{array} \quad \text { (induc hypo) }\right) \quad \text { }
$$

This last step is because log is concave which allows us to say that

$$
\frac{\log (x)+\log (y)}{2} \leq \log \left(\frac{x+y}{2}\right) \quad \rightarrow \quad \frac{\log \left(n_{L}+1\right)+\log \left(n_{R}+1\right)}{2} \leq \log \left(\frac{n_{L}+1+n_{R}+1}{2}\right)
$$

Since the runtime is no more than two random downward walks in a binary tree (we are walking two two trees) we get $T(n) \in O(\log n)$

I don't really understand this proof, for better check out video on learn.
So merge (and also insert and deleteMax) takes $O(\log n)$ expected time.

Binomial Heaps

This has a very different structure from binary heaps and melable heaps:

- Uses a list of L binary trees
- Each binary tree is a flagged tree: a complete binary tree T as the left subtree of root r
* Flagged tree of height h has exactly 2^{h} nodes
* So $h \leq \log n$ for all flagged trees
- Order-property: nodes in left subtree have no larger keys. No retrictions on nodes in right subtree.
- Root node will always be the largest (since the subtree is placed on the left)

Binomial Heap Operations

- insert: reduce to merge as before
- findMax: search every root for maximum and take that, so $L \rightarrow O(|L|)$ time
- To minimize $|L|$ we want the least number of flagged trees

Proper Binomial Heap: no two flagged trees have the same height

- Flagged tree of largest height h has $h \leq \log n$
- Only one flagged tree of each height in $\{0, \ldots, h\}$
- Every number can be represented in binary so our binomial representation is:

$$
n=c_{k} 2^{k}+c_{k-1} 2^{k-1}+\cdots+c_{0} 2^{0}
$$

- This ensures that $|L| \leq \log n+1$

Making Binomial Heaps proper

- Combining two flagged trees of the same height can be done in constant time. If r.key $\geq r^{\prime}$.key:

- The idea is to just do this whenever two flagged trees have the same height
- Runtime to make proper takes $O(|L|+\log n)$ if implemented suitably

The convention for L is that each spot i holds a flag tree of height i (with 2^{i} nodes)

Example: merging binomial heaps B and T then making the result proper

Computing $\log n$ takes $\log n$ time (done by divided by 2 repeatedly)

```
binomialHeap::makeProper()
    n}\leftarrow\mathrm{ size of the binomial heap
    compute }\ell\leftarrow\lfloorlog n
    B}\leftarrow\mathrm{ array of size }\ell+1\mathrm{ , initialized all-NIL
    L}\leftarrowlist of flagged tree
    while L is non-empty do
        T}\leftarrow\textrm{L}.\textrm{pop(), h}\leftarrowT.heigh
        while T'}\leftarrow\textrm{B}[\textrm{h}] is not NIL d
            if T.root.key < T'.root.key do swap T and T'
            // combine T with T'
            T'.right \leftarrow T.left, T.left }\leftarrowT', T.height \leftarrow h+1
            B[h] \leftarrowNIL, h++
            B[h]}\leftarrow
    // copy B back to list
    for (h = 0; h \leq \ell; h++) do
        if B[h] != NIL do L.append(B[h])
```

Proper binomial heap operations:

- Make binomial heap propery after every operation
- L always as length $O(\log n)$
- makeProper takes $O(\log n)$ time
- findMax: $O(\log n)$ worst-case time
- merge: $O(\log n)$ worst-case time (concatenate the two lists then makeProper)
- insert: $O(\log n)$ worst-case time via merge
- deleteMax: $O(\log n)$ worst-case
- Let T be the maximum among roots
- After finding T split $T \backslash\{$ root $\}$ into flagged trees T_{1}, \ldots, T_{k}

- Finally merge $L \backslash T$ with $\left\{T_{1}, \ldots, T_{k}\right\}$
- This has a $k \leq \log n \rightarrow O(\log n)$ worst-case time

In summary all operations have $O(\log n)$ worst-case run-time

Sorting, Average-case, and Randomization

Average-case Analysis

Definition: the average-case run-time of an algorithm is:

$$
T^{\operatorname{avg}}(n)=\frac{\sum_{I: \operatorname{size}(I)=n} T(I)}{\# \text { instances of size } n}=\frac{\sum_{I \in \mathcal{I}_{n}} T(I)}{\left|\mathcal{I}_{n}\right|}
$$

Note: we need \mathcal{I}_{n} to be finite.

Sorting Permutations

There is a infinite number of sets with n numbers so in order to take the average running time over all inputs we need some method to characterize the set so we can look at it more abstractly.

For comparision-based algorithms notice we don't care about the absolute size of each element.

$$
A=[14,3,2,6,1,11,7] \quad A^{\prime}=[14,4,2,6,1,12,8]
$$

Both sets will have the same run-time. The actual numbers don't matter, only their relative order
S_{n} (symmetric group of nth order) contains n ! different classes to characterize our lists of n elements into. Think of it as the set of possible permutations of n elements. (this course we will use Π_{n} instead)

To characterize relative order via sorting permutation we have a permutation $\pi \in \Pi_{n}$ for which:

$$
A[\pi(0)] \leq A[\pi(1)] \leq \cdots \leq A[\pi(n-1)]
$$

Example: notice that π^{-1} has the same sorting permutation as the list A

index		0	1	2	3	4	5	6
A	$=$	14	3	2	6	1	11	7
π	$=$	4	2	1	3	6	5	0
π^{-1}	$=$	6	2	1	3	0	5	4

If we assume that all n ! sorting permutations are equally likely so we have $T^{\text {avg }}(n)=\frac{1}{n!} \sum_{\pi \in \Pi} T(\pi)$ where

$$
\begin{aligned}
T(\pi) & =\text { run-time on any instance with sorting-permutation } \pi \\
& =\text { run-time on } \pi^{-1}
\end{aligned}
$$

Then π^{-1} can be used to represent all arrays in the class that π sorts (same runtime for every array in the class)

Example: Average-case Run-time of avgCaseDemo

```
// A: array of size n with distinct items
avgCaseDemo(A, n)
    if n \leq 2 return
    if A[n-2] < A[n-1]
        avgCaseDemo(A[0..n/2-1], n/2) // Good case
    else avgCaseDemo(A[0..n-3], n-2) // Bad case
```

Let $T(n)$ be the number of recursions (this will asymptotically be the same as the run-time)

- Worst-case analysis: recursive call could always have size $n-2$:

$$
T(n)=1+T(n-2)=1+1+\cdots+T(2)=n / 2-1 \in \Theta(n)
$$

- Best-case analysis: recursive call always have size $n / 2$:

$$
T(n)=1+T(n / 2)=1+1+T(n / 4)=\cdots=\log n-1 \in \Theta(\log n)
$$

- Average-case analysis:
- For one instance of π we get the recursive formula:

$$
T(\pi)= \begin{cases}1+T(\text { first } n / 2 \text { items }) & \text { if } \pi \text { is good } \\ 1+T(\text { first } n-2 \text { items) } & \text { if } \pi \text { is bad }\end{cases}
$$

May be tempted to write $1+T^{\text {avg }}(n / 2)$ and $1+T^{\text {avg }}(n-2)$ but this in incorrect because we are finding the runtime on a certain problem instance.

- Recursive formula for all instances π together (not at all trivial):

$$
\sum_{\pi \in \Pi_{n}} T(\pi)=\sum_{\pi \in \Pi_{n}: \pi \text { good }}\left(1+T^{\text {avg }}(n / 2)\right)+\sum_{\pi \in \Pi_{n}: \pi \text { bad }}\left(1+T^{\text {avg }}(n-2)\right)
$$

- Now we find the recursive formula for $T^{\text {avg }}(n)$

$$
\begin{aligned}
T^{\mathrm{avg}}(n) & =\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)=\frac{1}{\left|\Pi_{n}\right|}\left(\sum_{\pi \in \Pi_{n}: \pi \text { good }} T(\pi)+\sum_{\pi \in \Pi_{n}: \pi \text { bad }} T(\pi)\right) \\
& =\frac{1}{\left|\Pi_{n}\right|}\left(\sum_{\pi \in \Pi_{n}: \pi \text { good }}\left(1+T^{\text {avg }}(n / 2)\right)+\sum_{\pi \in \Pi_{n}: \pi \text { bad }}\left(1+T^{\text {avg }}(n-2)\right)\right) \\
& =1+\frac{1}{\left|\Pi_{n}\right|}\left(\mid\left\{\pi \in \Pi_{n}: \pi \text { good }\right\}\left|\cdot T^{\text {avg }}(n / 2)+\left|\left\{\pi \in \Pi_{n}: \pi \operatorname{bad}\right\}\right| \cdot T^{\text {avg }}(n-2)\right)\right. \\
& =1+\frac{1}{2} T^{\text {avg }}(n / 2)+\frac{1}{2} T^{\text {avg }}(n-2) \quad \text { (since exactly half the permutations are good) }
\end{aligned}
$$

- Claim: $T^{\text {avg }}(n) \leq 2 \log n$
- Base case: statement holds for $n \leq 2$
- Inductive step: assume that the statement holds for any $m<n$ where $n \geq 3$ then

$$
\begin{aligned}
T^{\text {avg }}(n) & =1+\frac{1}{2} T^{\text {avg }}(n / 2)+\frac{1}{2} T^{\operatorname{avg}}(n-2) \\
& \leq 1+\frac{1}{2}(2 \log (n / 2))+\frac{1}{2}(2 \log (n-2)) \\
& \leq 1+\log n-\log 2+\log n=2 \log n
\end{aligned}
$$

Thus the claim holds and the average-case run-time is $O(\log n)$

Randomized Algorithms

Definition: a randomized algorithm is one that relies on some random numbers in addition to the input
Remark: software cannot generate randomness instead a pseudo-random number generators (PRNG) is given a seed and generates a sequence for seemingly random numbers

- The quality of the randomized algorithms depends on the quality of the PRNG
- There does exist hardware for true randomness (e.g. detecting radiactive decay or cosmic rays)

The goal such an algorithm is to shift run-time dependency on the input to the random numbers. Removing bad instances and only leaving unlucky numbers makes the run-time of the algorithm more stable.
e.g. if you are given a bad case maybe you can shuffle the elements to get a better case.

Expected Running Time

Definition: $T(I, R)$ is the running time of the randomized algorithm \mathcal{A} with:

- Problem instance I
- Sequence of random numbers R

Definition: $T^{\exp }(I)$ is the expected runing time on I.

- The expected value for runtime over all possible random inputs.

$$
T^{\exp }(I)=E[T(I, R)]=\sum_{R} T(I, R) P(R)
$$

Definition: $T^{\exp }(n)$ is the expected running time of \mathcal{A} on problems of size n.

- The max expected runtime over all instances of size n.

$$
T^{\exp }(n):=\max _{I \in \mathcal{I}_{n}} T^{\exp }(I)
$$

Occasionally we discuss the very worst that could happen: $\max _{I} \max _{R} T(I, R)$.

Example: Expected Running Time of expectedDemo

```
// A: array of size n with distinct items
expectedDemo(A, n)
    if n \leq 2 return
    if random(2) swap A[n-1] and A[n-2]
    if A[n-2] \leq A[n-1]
        expectedDemo(A[0..n/2-1], n/2) // Good case
    else expectedDemo(A[0..n-3], n-2) // Bad case
```

- Assume that $\operatorname{random}(n)$ returns an interger uniformly from $\{0,1,2, \ldots, n-1\}$.
- Observe that $P(\operatorname{good}$ case $)=\frac{1}{2}=P(\operatorname{bad}$ case $)$

Run-time on array A if random outcomes are $R=\left\langle x, R^{\prime}\right\rangle$

$$
T(A, R)= \begin{cases}1+T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) & \text { if } x=\operatorname{good} \\ 1+T\left(A[0 \ldots n-3], R^{\prime}\right) & \text { if } x=\mathrm{bad}\end{cases}
$$

Summing up over all sequences of random outcomes:

$$
\begin{aligned}
\sum_{R} P(R) T(A, R)= & P(X \text { good }) \sum_{R^{\prime}} P\left(R^{\prime}\right)\left(1+T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right)\right) \\
& +P(X \text { bad }) \sum_{R^{\prime}} P\left(R^{\prime}\right)\left(1+T\left(A[0 \ldots n-3], R^{\prime}\right)\right) \\
& =1+\frac{1}{2} \sum_{R^{\prime}} P\left(R^{\prime}\right) T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}} P\left(R^{\prime}\right) T\left(A[0 \ldots n-3], R^{\prime}\right) \\
& \leq 1+\frac{1}{2} \underbrace{\max _{R^{\prime}} P\left(R^{\prime}\right) T\left(A^{\prime}, R^{\prime}\right)}_{T^{\prime} \in \mathcal{I}_{n / 2}}+\underbrace{\max _{2} \sum_{A^{\prime} \in \mathcal{I}_{n-2}} P\left(R_{R^{\prime}}^{\prime}\right) T\left(A^{\prime}, R^{\prime}\right)}_{T^{\exp }(\lfloor n / 2\rfloor)} \\
& \leq 1+\frac{1}{2} T^{\exp }(n / 2)+\frac{1}{2} T^{\exp }(n-2)
\end{aligned}
$$

Then since this holds for all A we have:

$$
T^{\exp }(n)=\max _{A \in \mathcal{I}_{n}} \sum_{R} P(R) T(A, R) \leq 1+\frac{1}{2} T^{\exp }(n / 2)+\frac{1}{2} T^{\exp }(n-2)
$$

- This the same recursion as for $T_{\text {avgCaseDemo }}^{\text {avg }}(n)$
- So we can perform the same analysis to arrive at $T_{\text {expectedDemo }}^{\exp }(n) \in O(\log n)$

In general, we cannot say that the expected time of a randomized version of an algorithm is the same as the average-case time of the deterministic version. However, later we will see a case when they are equal.

QuickSelect

The Selection Problem

Definition: the selection problem is given an array A of n numbers with $0 \leq k<n$ find the element that would be at position k of the sorted array

- Special case: median finding $=$ selection with $k=\left\lfloor\frac{n}{2}\right\rfloor$
- Using heapify then performing k deleteMax, selection can be done with heaps in $\Theta(n+k \log n)$
- Median-finding with this takes $\Theta(n \log n)$ (same cost as our best sorting algorithms)

We will see that using QuickSelect we can do this in linear time.

Subroutines

QuickSelect and the related algorithm QuickSort rely on two subroutines:

- choose-pivot(A): return an index p in A. We will use the pivot-value $v \leftarrow A[p]$ to rearrange the array
- We want this to be close to median value for best performance
- For now just assume it always selects rightmost element in array (return A.size - 1)
- partition(A,p): rearrange A and return pivot index i such that
- pivot-value v is in $A[i]$
- all items in $A[0, \ldots, i-1]$ are $\leq v$
- all items in $A[i+1, \ldots, n-1]$ are $\geq n$

Simple linear-time partition algorithm

```
// A: array of size n
// p: integer s.t. 0 \leq p < n
partition(A, p)
    Create empty lists smaller, equal and larger.
    v \leftarrow A [p]
    for each element x in A
        if x < v then smaller.append(x)
        else if x > v then larger.append(x)
        else equal.append(x).
    i}\leftarrow\mathrm{ smaller.size
    j}\leftarrow\mathrm{ equal.size
    Overwrite A[0...i-1] by elements in smaller
    Overwrite A[i...i+j-1] by elements in equal
    Overwrite A[i+j...n-1] by elements in larger
    return i
```

It is possible to do this in both linear-time and with $O(1)$ auxiliary space.

Efficient in place partition algorithm (Hoare)

```
// A: array of size n
// p: integer s.t. 0 \leq p < n
partition(A, p)
    swap(A[n-1], A[p])
    i}\leftarrow-1, j\leftarrown-1, v \leftarrowA[n-1
    loop
        do i \leftarrow i+1 while A[i] < v
        do j \leftarrowj-1 while j \geqi and A[j] > v
        if i \geq j then break
    else swap(A[i], A[j])
    end loop
    swap(A[n-1], A[i])
    return i
```

The idea is to keep swapping the outer-most wrongly-positioned pairs.

Loop invariant:

Start from left and start from right, then scan toward the center doing swaps. (complete pain to implement)

Example:

$i=-1$	0	1	2	3	4	5	6	7	8	j=9
	30	60	10	0	50	80	90	20	40	$\mathrm{v}=70$

0	1	2	3	4	i	$i=5$	6	7	$\mathrm{j}=8$
30	60	10	0	50	80	90	20	40	$\mathrm{v}=70$

0	1	2	3	4	$i=5$	6	7	$j=8$	9
30	60	10	0	50	40	90	20	80	$v=70$

0	1	2	3	4	5	i=6	j=7	8	9
30	60	10	0	50	40	90	20	80	$\mathrm{v}=70$

0	1	2	3	4	5	i=6	$\mathrm{j}=7$	8	9
30	60	10	0	50	40	20	90	80	$\mathrm{v}=70$

0	1	2	3	4	5	j=6	i=7	8	9
30	60	10	0	50	40	20	90	80	$\mathrm{v}=70$
0	1	2	3	4	5	$\mathrm{j}=6$	i=7	8	9
30	60	10	0	50	40	20	70	80	90

QuickSelect Algorithm

```
// A: array of size n
// k: integer s.t. 0 \leq k < n
QuickSelect(A, k)
    p}\leftarrow\mathrm{ choose-pivot(A)
    i}\leftarrow\operatorname{partition(A, p)
    if i = k then
        return A[i]
    else if i > k then
            return QuickSelect(A[0, 1,...,i-1], k)
    else if i < k then
    return QuickSelect(A[i+1, i+2,...,n-1], k - (i+1))
```

After each partition we have:

- If $k=i$ then return v (value has been found and we are done)
- If $k<i$ then perform QuickSelect on $\leq v$ part of the array
- If $k>i$ then perform QuickSelect on $\geq v$ part of the array

Let $T(n, k)$ be the number of key-comparisons in a size n array with parameter k (asymptotically the same as run-time)
Note that partition uses n key-comparisions

- Worst-case analaysis: Pivot-index is last, $k=0$

$$
T(n, 0) \geq n+(n-1)+(n-2)+\cdots+1 \in \Omega\left(n^{2}\right)
$$

- Best-case analysis: first chosen pivot could be k th element (no recursive calls)

$$
T(n, k)=n \in \Theta(n)
$$

- Average-case analysis: using sorting permutations and ignoring the parameter k we have

$$
T^{\mathrm{avg}}(n)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)
$$

Assume that sorting permutation π gives pivot-index i then if array after partition is A^{\prime} then

$$
T(\pi) \leq n+\max \{T(\underbrace{A^{\prime}[0 \ldots i-1]}_{\text {size } i}), T(\underbrace{A^{\prime}[i+1 \ldots n-1]}_{\text {size } n-i-1})\}
$$

- Option 1: perform a very complicated proof to show that

$$
\sum_{\pi \in \Pi_{n}: \text { pivot-idx } i} T(\pi) \leq \sum_{\pi \in \Pi_{n}: \text { pivot-idx } i}\left(n+\max \left\{T^{\text {avg }}(i), T^{\text {avg }}(n-i-1)\right\}\right)
$$

- Option 2: prove the avg-case run-time via randomized version of algorithm
* Convert QuickSelect to RandomizedQuickSelect
* Determine the expected run-time of RandomizedQuickSelect
* Find how the expected run-time implies the avg-case run-time of QuickSelect

It is too difficult to use option 1 so we will use option 2 (note that option 2 is not always valid)

Randomized QuickSelect

To create a randomized version of QuickSelect:

- First idea: randomly permute the input first using shuffle

```
// A: array of size n
shuffle(A)
    for i}\leftarrow1\mathrm{ to n-1 do
        swap(A[i], A[random(i+1)])
```

This works well, but we can do it directly within the routine

- Second idea: change the pivot selection

```
RandomizedQuickSelect(A, k)
```

 \(\mathrm{p} \leftarrow \operatorname{random}(\mathrm{A}\). size)
 \(i \leftarrow \operatorname{partition}(A, p)\)
 We observe that $P($ pivot has index $i)=\frac{1}{n}$

We use the second idea to create RandomizedQuickSelect

Assume we konw that the first random gave pivot-index i :

- We either recurse into an array of size $i, n-i-1$, or not at all
- If new array after partition is A^{\prime} and $R=\left\langle i, R^{\prime}\right\rangle$ then

$$
\begin{aligned}
& T\left(\pi, k,\left\langle i, R^{\prime}\right\rangle\right) \leq n+ \begin{cases}T\left(A^{\prime}[0 \ldots i-1], k, R^{\prime}\right) & \text { if } i>k \\
T\left(A^{\prime}[i+1 \ldots n-1], k-i-1, R^{\prime}\right) & \text { if } i<k \\
0 & \text { otherwise }\end{cases} \\
& T\left(\pi, k,\left\langle i, R^{\prime}\right\rangle\right) \leq n+T\left(\text { some array of size } i \text { or } n-i-1, \text { some } k^{\prime}, R^{\prime}\right)
\end{aligned}
$$

Claim: over all choices of i and R^{\prime}

$$
\sum_{R} T(\pi, k, R) \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}
$$

- Proof is similar to expectedDemo (note $T^{\exp }(\cdot)$ uses maximum over all instances)
- This bound holds for all π, k

$$
T^{\exp }(n)=\max _{\pi} \max _{k} \sum_{R} T(\pi, k, R) \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}
$$

Claim: this recursion resolves to $O(n)$

$$
T^{\exp }(n) \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}
$$

Proof: show that $T^{\exp }(n) \leq 4 n$

- Base case: $n=1$ holds
- Inductive step: assume $T^{\exp }(m) \leq 4 m$ for all $m<n$

$$
\begin{align*}
T^{\exp }(n) & \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\} \\
& \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \{4 i, 4(n-i-1)\} \\
& \leq n+\frac{4}{n} \sum_{i=0}^{n-1} \max \{i,(n-i-1)\} \\
& \leq n+\frac{4}{n}\left(3 \frac{n^{2}}{4}-\frac{n}{2}\right) \tag{}\\
& \leq 4 n
\end{align*}
$$

Derivation for (*):

$$
\begin{aligned}
\sum_{i=0}^{n-1} \max \{i, n-i-1\}= & \sum_{i=0}^{\frac{n}{2}-1} \max \{i, n-i-1\}+\sum_{i=\frac{n}{2}}^{n-1} \max \{i, n-i-1\} \\
= & \max \{0, n-1\}+\max \{1, n-2\}+\cdots+\max \left\{\frac{n}{2}, \frac{n}{2}-1\right\} \\
& +\max \left\{\frac{n}{2}, \frac{n}{2}-1\right\}+\max \left\{\frac{n}{2}+1, \frac{n}{2}-2\right\}+\cdots+\max \{n-1,0\} \\
= & (n-1)+(n-2)+\cdots+\frac{n}{2} \\
& +\frac{n}{2}+\left(\frac{n}{2}+1\right)+\cdots+(n-1) \\
= & 2\left((n-1)+(n-2)+\cdots+\frac{n}{2}\right)=? \frac{n}{2}\left(\frac{3 n}{2}-1\right)=3 \frac{n^{2}}{4}-\frac{n}{2}
\end{aligned}
$$

Thus we can say RandomizedQuickSelect has expected run-time of $O(n)$

- This is generally the fastest QuickSelect implementation
- CS341 has variation with worst-case $O(n)$ running time, but double recursion and is slower in practice

Expected Run-time vs Average-case Run-time

In general the expected and average run-time is not the same, however here is a special case.

- Assume we have an algorithm \mathcal{A} that solves selection or sorting
- Create a randomized algorithm \mathcal{B} as follows:
- Let I be the given instance (an array)
- Randomly (and uniformly) permute I to get I^{\prime}
* Done with shuffle but for QuickSelect random pivot has same effect
- Call algorithm \mathcal{A} on input I^{\prime}

Claim: $T_{\mathcal{B}}^{\exp }(n)=T_{\mathrm{A}}^{\mathrm{avg}}(n)$
Proof:

- I is a instance with sorting permutation π
- σ is the sorting permutation for shuffling I so we have $\sigma(I)=I^{\prime}$
- Then the sorting permutation of I^{\prime} is $\pi \circ \sigma^{-1}$

$$
\sigma(I)=I^{\prime} \quad \rightarrow \quad \sigma^{-1}\left(I^{\prime}\right)=I \quad \rightarrow \quad \pi \circ \sigma^{-1}\left(I^{\prime}\right)=\underbrace{\pi(I)}_{\text {sorted }}
$$

- For a group G and a subgroup H of G, if we let $g \in G$ then

$$
g H=\{g h: h \in H\}
$$

- Since G is a subgroup of G then $g G=G$ since $g G \subseteq G$ and $g G \supseteq G$

$$
h \in G \quad \rightarrow \quad h \in g G \quad \rightarrow \quad h=g\left(g^{-1} h\right)
$$

$$
\begin{aligned}
T_{\mathcal{B}}^{\exp }(n) & =\max _{I \in \mathcal{I}_{n}} \sum_{R} T_{\mathcal{B}}(I, R) \operatorname{Pr}(R) \\
& =\max _{I \in \mathcal{I}_{n}} T_{\mathcal{A}}\left(I^{\prime}\right) \operatorname{Pr}(R) \\
& =\max _{\pi \in \Pi_{n}} \frac{1}{n!} \sum_{\sigma \in \Pi_{n}} T_{\mathcal{A}}\left(\pi \circ \sigma^{-1}\right) \\
& =\max _{\pi \in \Pi_{n}} \frac{1}{n!} \sum_{\tau \in \Pi_{n}} T_{\mathcal{A}}(\tau) \\
& =T_{\mathcal{A}}^{\operatorname{avg}}(n)
\end{aligned}
$$

Using this we conclude that since RandomizedQuickSelect has expected run-time $O(n)$, then QuickSelect has average-case run-time $O(n)$

QuickSort

Hoare developed partition and QuickSelect in 1960, he then applied the ideas to create QuickSort:

```
// A: array of size n
QuickSort(A)
    if n \leq 1 then return
    p}\leftarrow\mathrm{ choose-pivot(A)
    i}\leftarrow\operatorname{partition(A, p)
    QuickSort(A[0,1, ...,i-1])
    QuickSort(A[i+1,....,n-1])
```


QuickSort Analysis

Set $T(n):=\#$ of key-comparison for QuickSort in a size- n array

- Worst-case analysis: recursive call could always have size $n-1$

$$
T(n) \geq n+T(n-1) \in \Omega\left(n^{2}\right)
$$

this is tight since the recursion depth is at most n

- Best-case analysis: if pivot-index is always in the middle we recurse in two sub-arrays of size $\leq n / 2$

$$
T(n) \leq n+2 T(n / 2) \in O(n \log n)
$$

this can be shown to be tight

- Average-case analysis: will be proved via randomization.

$$
T^{\exp }(0)=T^{\exp }(1)=0 \quad \text { and } \quad T^{\exp }(n) \leq n+\frac{1}{n} \sum_{i=0}^{n-1}\left(T^{\exp }(i)+T^{\exp }(n-(i+1))\right)
$$

- Assume that $n=4 q$
- Claim: $T^{\exp }(n) \leq 2 n \log _{4 / 3} n$
- Base case: $n=1$ we know that $T^{\exp }(1)=0$ directly which is ≤ 0
- Inductive step: we call an index i small if $i \leq \frac{3}{4} n$ and large otherwise
* For small i :

$$
T^{\exp }(i) \leq 2 i \log _{4 / 3} i \leq 2 i \log _{4 / 3}\left(\frac{3}{4} n\right)=2 i \log _{4 / 3} n-2 i
$$

* For large i :

$$
\begin{aligned}
T^{\exp }(n) & \leq n+\frac{2}{n} \sum_{i \text { small }} 2 i \log _{4 / 3} n-\frac{2}{n} \sum_{i \text { small }} 2 i+\frac{2}{n} \sum_{i \text { large }} 2 i \log _{4 / 3} n \\
& \leq n+\frac{4}{n} \sum_{i=2}^{n-1} i \log _{4 / 3} n-\frac{4}{n} \sum_{i=2}^{\frac{3}{4} n} i \\
& \leq n+\frac{4}{n} \log _{4 / 3} n \underbrace{\sum_{i=2}^{n-1} i}_{\leq \frac{n(n-1)}{2}} \underbrace{\frac{4}{n} \sum_{i=2}^{\frac{3}{4} n} i}_{\geq n} \\
& \leq n+2(n-1) \log _{4 / 3} n-n \\
& \leq 2 n \log _{4 / 3} n
\end{aligned}
$$

Easier method to find this using expected recursion-depth in module 3 slides $31 / 45$ to $32 / 45$

QuickSort Improvements

- Auxiliary space is Ω (recursion depth)
- $\Theta(n)$ in the worst-case, $\Theta(\log n)$ in averge-case
- Worst case can be reduced to $\Theta(\log n)$ by recursing in smaller sub-array first and replacing the other recursion by a while-loop
- Stop recursing when $n \leq 10$ then run InsertionSort to sort in $O(n)$ since all items are within 10 units of their required position
- Array with many duplicates can be sorted by changing partition to produce three subsets

$\leq v$	$=v$	$\geq v$

- Two programming tricks that apply in many situations
- Instead of passing full arrays, pass only the range of indices
- Avoid recursion altogether by keeping an explicit stack

```
QuickSortImproved(A, n)
    Initialize a stack S of index-pairs with { (0, n-1) }
    while S is not empty
        (\ell,r)}\leftarrowS.pop(
        while (r-\ell+1 > 10) do
            p \leftarrowchoose-pivot-improved(A, \ell,r)
            i \leftarrow partition-improved(A, \ell,r, p)
            if (i-\ell > r-i) do
            S.push( (\ell, i-1) )
            \ell \leftarrow ~ i + 1
        else
            S.push( (i+1,r) )
            r \leftarrowi-1
    InsertionSort(A)
```

Usually in practice this is most efficient sorting algorithm (even though worst-case is still $\Theta\left(n^{2}\right)$)

Comparison-based Sorting Lower Bound

We have seen a good variety of sorting algorithms:

Algorithm	Running time	Analysis
Selection Sort	$\Theta\left(n^{2}\right)$	worst-case
Insertion Sort	$\Theta\left(n^{2}\right)$	worst-case
Merge Sort	$\Theta(n \log n)$	worst-case
Heap Sort	$\Theta(n \log n)$	worst-case
QuickSort	$\Theta(n \log n)$	average-case
RandomizedQuickSort	$\Theta(n \log n)$	expected

Is it possible to do better than $\Theta(n \log n)$ running time?

- No: for comparison-based sorting the lower bound is $\Omega(n \log n)$
- Yes: non-comparision-based sorting methods can achieve $O(n)$ with restrictions on input

The Comparison Model

In the comparison model data can only be accessed in two ways:

- Comparing two elements
- Moving elements around (e.g. copying, swapping)

All the sorting algorithms we have seen so far are use the comparison model
This is useful because it makes very few assumptions on the kind of things we are sorting.

Decision Trees

We can expression comparison-based algorithms as a decision tree. To sort $\left\{x_{0}, x_{1}, x_{2}\right\}$ we have:

Example:

$$
\left\{x_{0}=4, x_{1}=2, x_{2}=7\right\}
$$

As a result we say the input $\{4,2,7\}$ has sorting permutation $\langle 1,0,2\rangle$

Lower Bound for Sorting in the Comparison Model

Theorem: any correct comparison-based sorting algorithm requires at least $\Omega(n \log n)$ comparision operations to sort n distinct items

Proof:

- For n distinct elements there are n ! permutations, so there are at least n ! leaves in the decision tree
- A sorting algorithm can be thought of as producing a permutation that sorts a list
- In general a decision tree will have at least as many leaves as outputs of the algorithm
- Since there are n ! ways to reverse list permutations the decision tree will have at least n ! leaves
- Binary tree with height h has at most 2^{h} leaves
- Since $n!\leq \#$ leaves and $2^{h} \geq \#$ leaves we get

$$
\begin{aligned}
2^{h} \geq \text { \# leaves } & \geq n!\quad \rightarrow \quad h \geq \log (\text { \# leaves }) \geq \log n!\quad \rightarrow \quad h \geq \log n! \\
\log n! & =\log (n(n-1) \cdots 2 \cdot 1) \\
& =\log n+\log (n-1)+\cdots+\log 2+\log 1 \\
& \geq \log n+\log (n-1)+\cdots+\log \left(\frac{n}{2}+1\right)+\log \frac{n}{2} \\
& \geq \log \frac{n}{2}+\log \frac{n}{2}+\cdots+\log \frac{n}{2} \\
& \geq \frac{n}{2} \log \frac{n}{2} \\
& \geq \frac{n}{2} \log n-\frac{n}{2} \in \Omega(n \log n)
\end{aligned}
$$

Thus the tree has depth $h \in \Omega(n \log n)$ thus we need at least $\Omega(n \log n)$ comparisons to sort a list.

Non-comparsion-based Sorting

- Assume the keys are numbers in base R (also called radix R)
- Common choices for radix are $R=2,10,128,256$
- Assume that all keys have m digits (by padding with leading 0 s)

Example: $R=4$ and $m=3$

123	230	021	320	210	232	101

Bucket Sort

Create an array as large as the radix then choose an digit and sort the list by that digit.

Example: sorting the array A by its last digit

Important: always append to the end of the linked list and read from the beginning
Bucket sort on its own only works when $m=1$ (numbers are one digit long)
For later it is extremely important that this sorting is stable
(elements that are considered equal stay in the same relative order)

```
// A: array of size n, contains numbers with digits in {0,...,R-1}
// d: index of digit by which we wish to sort
Bucket-sort(A, d)
    Initialize an array B[0...R-1] of empty lists (buckets)
    for i}\leftarrow0 to n-1 d
        Append A[i] at end of B[digit d of A[i]]
    i}\leftarrow
    for j}\leftarrow0 to R-1 d
        while B[j] is non-empty do
            move first element of B[j] to A[i++]
```

Run-time $\Theta(n+R)$ and auxiliary space $\Theta(n+R)$

MSD Radix Sort

Sorts an array of m-digit radix- R numbers recursively, starting from leading digit.

```
// \ell,r: range of what we sort, 0 \leq \ell, r \leq n-1
MSD-Radix-sort(A, \ell\leftarrow0, r \leftarrow n-1, d \leftarrow index of leading digit)
    if \ell < r
        bucket-sort(A[\ell..r], d)
        if there are digits left // recurse in sub-arrays
            \ell'}\leftarrow
            while ( }\mp@subsup{\ell}{}{\prime}<r) d
                Let r' \geq \ell' be maximal s.t. A[\ell'..r'] all have same dth digit
                MSD-Radix-sort(A, \ell', r', d+1)
            \ell'}\leftarrow\mp@subsup{r}{}{\prime}+
```

- Auxiliary space: $\Theta(n+R+m)$ for bucket-sort and the recursion stack
- Run-time: $\Theta(m n R)$ since we may have $\Theta(m n)$ subproblems

Example:

The drawback of MSD-Radix-Sort is that there are many recursions

LSD Radix Sort

Sort an array of m-digit radix- R numbers starting from the last digit.

```
// A: array of size n, contains m-digit radix-R numbers
LSD-radix-sort(A)
    for d}\leftarrow\mathrm{ least significant to most significant digit do
        Bucket-sort(A, d)
```

- Loop-invariant: A is sorted w.r.t. digits d, \ldots, m of each entry
- This is due to the stability of bucket sort
- Time cost: $\Theta(m(n+R))$
- Auxiliary space: $\Theta(n+R)$

Example:

12(3)	$(d=3)$	2(3)0	$(d=2)$	(1) 01	$(d=1)$	021
23(0)		3(2)0		(2) 10		101
02(1)		2(1)0		(3) 20		123
32(0)		0 (2) 1		(0) 21		210
21(0)		1(0)1		(1) 23		230
23(2)		2(3)2		(2) 30		232
10(1)		1(2) 3		(2) 32		320

- When sorting physical items MSD radix sort works better
- Works better than LSD radix sort if we expect lots of variation in length m
- e.g. sorting books in alpha order

Dictionaries

Definition: a dictionary ADT is a collection of elements each of which is a key-value pair (KVP)

- Keys can be compared and are typically unique

Operations:

- $\operatorname{search}(k)$
- $\operatorname{insert}(k, v)$
- delete (k)

Optional: isEmpty, size, join, closestKeyBefore, etc.

Common assumptions:

- Dictionary has n KVPs
- Keys can be compared in constant time
- Each KVP uses constant space (if not, then value could be a pointer)

Elementary implementations:

- Unordered array or linked list
- search: $\Theta(n)$
- insert: $\Theta(1)$ (array may occasionally need resize)
- delete: $\Theta(n)$ (need to search)
- Ordered array
- search: $\Theta(\log n)$ (via binary search)
- insert: $\Theta(n)$
- delete $\Theta(n)$

Binary Search Tree (BST)

- Structure:
- All nodes have two (possibly empty) subtrees and store a KVP
- Ordering:
- Every key in T.left is less than T.key
- Every key in T.right is more than T.key

Example:

BST can be used to realize an ADT dictionary.

- BST::search(k)
- Start at root, compare k to current node's key
* If found stop
* If k is greater than current node's key then go right
* If k is less than current node's key then go left
- BST::insert (k, v)
- Search for k until arriving at a null child, then insert (k, v) as a new node
- BST::delete (k)
- Search for the node x that contains the key
* If x is a leaf then just delete it
* If x has one non-empty subtree, move that child up
* Else swap key at x with key at successor or predecessor node and then delete that node
$B S T::$ search, BST:: insert, BST::delete all have cost $\Theta(h)$ where $h=$ height of tree. Size of h :
- Worst-case: $n-1 \in \Theta(n)$
- Best-case: $\Theta(\log n)$
- Any binary tree with n nodes has height $\geq \log (n+1)$ - 1
- Average-case: $\Theta(\log n)$

AVL Tree

AVL Tree is a BST with an addiitonal height-balance property at every node

$$
\text { balance }(v):=\operatorname{height}(R)-\operatorname{height}(L) \text { must be in }\{-1,0,1\}
$$

The heights of the left and right subtree differ by at most 1 (height of empty tree is defined to be -1)

If node v has left subtree L and right subtree R then

$$
\text { balance }(v):=\operatorname{height}(R)-\operatorname{height}(L) \text { must be in }\{-1,0,1\}
$$

- balance $(v)=-1$ means v is left-heavy
- balance $(v)=+1$ means v is right-heavy

To keep things simple we assume each node v stores the max height of subtrees rooted at it

- It is possible to only store balance (v) instead but the code gets more complex

Example: the numbers in blue indicate the height of the subtree

Example: storing balance instead of height at each node

AVL Tree Height

Theorem: an AVL tree on n nodes has $\Theta(\log n)$ height
This directly implies that search, insert, delete all $\operatorname{cost} \Theta(\log n)$ in worst case

Proof:

- Define $N(h)$ to be the least number of nodes in a AVL tree of height h

- Notice that the recurrence relation for $N(h)$ is similar to the Fibonacci sequence

n	0	1	2	3	4	5	6	7	8	\cdots
$\operatorname{Fib}(n)$	0	1	1	2	3	5	8	13	21	\cdots
$\operatorname{Fib}(n)-1$	-1	0	0	1	2	4	7	12	20	\cdots

- Notice that we build an AVL tree of height h by using AVL trees of heights $h-1$ and $h-2$

$$
\operatorname{Fib}(\ell)-1=\underbrace{\operatorname{Fib}(\ell-1)-1}_{\text {left children }}+\underbrace{1}_{\text {root }}+\underbrace{\operatorname{Fib}(\ell-2)-1}_{\text {right children }}
$$

- Claim: $\sqrt{2}^{h}-1 \leq N(h)$
- Base case: $h=0$ then $\sqrt{2}^{0}-1=0 \leq N(0)=0$
- Inductive step: assume claim holds for $m<h$ where $h \geq 1$ then

$$
\begin{aligned}
N(h) & =N(h-1)+N(h-2)+1 \\
& \geq 1+2 N(h-2) \\
& \geq 1+2\left(\sqrt{2}^{h-2}-1\right) \\
& \geq 1+\sqrt{2}^{h}-2 \\
& \geq \sqrt{2}^{h}-1
\end{aligned}
$$

Thus the claim holds by induction

- Since $n \geq N(h)$ we have

$$
\begin{aligned}
n \geq N(h) \geq \sqrt{2}^{h}-1 & \Longrightarrow \quad n \geq \sqrt{2}^{h}-1 \\
& \Longrightarrow n+1 \geq \sqrt{2}^{h} \\
& \Longrightarrow \quad \log _{\sqrt{2}}(n+1) \geq h \\
& \Longrightarrow h \in O(\log n)
\end{aligned}
$$

- Not shown in class: I think $N(h+1) \geq n$ allows us to get $h \in \Omega(\log n)$ and conclude that $h \in \Theta(\log n)$

AVL Rebalance

There are many different BSTs with the same keys.
If take A, B, C, D as same height then there are 5 cases for every subtree after BST insert or delete:

After a BST insert or delete to fix the height-balance property we find the node closest to the modified one that breaks the property and fix that subtree to turn the entire BST back into a AVL tree.

- Right Rotation: right rotation on node z


```
rotate-right(z)
    y}\leftarrowz.left, z.left \leftarrowy.right, y.right \leftarrow z
    setHeightFromSubtrees(z), setHeightFromSubtrees(y)
    return y // returns new root of subtree
```

- Left Rotation: left rotation on node z


```
rotate-right(z)
    y}\leftarrowz.right, z.right \leftarrowy.left, y.left \leftarrow z
    setHeightFromSubtrees(z), setHeightFromSubtrees(y)
    return y // returns new root of subtree
```

- Double Right Rotation: double right rotation on node z :
- First, a left rotation at y
- Second, a right rotation at z

- Double Left Rotation: double left rotation on node z :
- First, a right rotation at y
- Second, a left rotation at z

In summary to fix a slightly-unbalanced AVL tree we have

```
restructure(x,y,z)
node }x\mathrm{ has parent }y\mathrm{ and grandparent z
    1. case
    (D): : // Right rotation
        return rotate-right(z)
(2): : // Double-right rotation
        z.left }\leftarrow\mathrm{ rotate-left(y)
        return rotate-right(z)
(2): : // Double-left rotation
        z.right }\leftarrow\mathrm{ rotate-right(y)
        return rotate-left(z)
(2): : // Left rotation
    return rotate-left(z)
```


AVL Insertion

- Insert (k, v) with the usual BST insertion (returns leaf z where the key is stored)
- Then move up the tree from z, updating heights
- BST::Insert could return full path to z or we need parent pointers
- When height difference becomes ± 2 at node z then z is unbalanced and we need to rebalance

```
setHeightFromSubtrees(u)
    1. u.height }\leftarrow1+\operatorname{max{u.left.height, u.right.height}
AVL::insert(k, v)
    z}\leftarrow\textrm{BST}::insert(k, v) // leaf where k is now stored
    while (z is not NIL)
        if (|z.left.height - z.right.height| > 1) then
            Let y be taller child of z
            Let x be taller child of y
            z}\leftarrow\mathrm{ restructure(x, y, z)
            break // can argue that we are done
    setHeightFromSubtrees(z)
    z}\leftarrowz\mathrm{ .parent
```

After a single restructure the height of the overall tree becomes the same as before the added node, since we had a AVL tree previously.

Example: AVL::insert(8)

$$
\begin{gathered}
16 \\
0
\end{gathered}
$$

AVL Deletion

- Remove the key k with $B S T::$ delete (returns node z which is parent of deleted node)
- Find the node where structural change happened (not necessarily near node that had k)
- Go back up to root updating heights and rotate if needed

```
AVL::delete(k)
    z\leftarrow BST::delete(k)
    // Assume z is the parent of the BST node that was removed
    while (z is not NIL)
        if (|z.left.height - z.right.height| > 1) then
            Let y be taller child of z
            Let x be taller child of y (break ties to prefer single rotation)
            z}\leftarrow\mathrm{ restructure(x, y, z)
        // Always continue up the path and fix if needed.
        setHeightFromSubtrees(z)
        z}\leftarrowz\mathrm{ .parent
```

Example: AVL::delete(22)

Important: ties must be broken with a single rotation

- In the example above the key 10 has two children of the same height
- If we instead chose its left child and performed double-rotation we would get:

The resulting tree is not an AVL tree.

AVL Tree Operations Runtime

- search: Θ (height)
- Same operation as BST
- insert: Θ (height)
- Perform BST::insert then check along path to new leaf
- restructure restores height of subtree to before inserting new leaf (call at most once)
- delete: Θ (height)
- Perform BST::insert then check along path to delete node
- restructure may be called Θ (height) times

Worst-case for all operations is Θ (height $)=\Theta(\log n)$ but in practice the constant is quite large due to many rotations.

Amortized Analysis

A common pattern is for some operations is:

- usually fast
- occasionally slow

The worst-case run-time does not reflect how over a long periods such an operation can work quite well.

Definition: an amortized run-time bound is a bound that holds if we add the bounds over all operations

$$
\sum_{i=1}^{k} T^{\text {actual }}\left(\mathcal{O}_{i}\right) \leq \sum_{i=1}^{k} T^{\text {amort }}\left(\mathcal{O}_{i}\right)
$$

Where $\mathcal{O}_{1}, \ldots, \mathcal{O}_{k}$ is any feasible sequence of operations and:

- $T^{\text {actual }}(\cdot)$ is the actual run-time
- $T^{\text {amort }}(\cdot)$ is the amortized run-time (or an upper bound for it)

We have three methods to perform amortized run-time analysis:

$$
c_{i}=T^{\text {actual }}\left(\mathcal{O}_{i}\right) \quad \hat{c}_{i}=T^{\text {amort }}\left(\mathcal{O}_{i}\right)
$$

- Aggregate Analysis:
- For n operations we let $\hat{c}_{i}:=T(n) / n$
- We know that $\sum_{i=0}^{n} c_{i} \leq T(n)$ and we have

$$
\sum_{i=0}^{n} c_{i} \leq \sum_{i=1}^{n} \hat{c}_{i}=n \frac{T(n)}{n}=T(n)
$$

- Accounting Method:
- Instead of having the same amortized time for all operations
- Overcharge on the many fast operations to pay for the occasionally slower operation
- Potential Method (method we will use):
- Simular to the accounting method but we consider credit as potential energy
- Potential is given by function $\Phi(\cdot)$ which depends on the current state of the data structure
* We require that $\Phi: D \rightarrow \mathbb{R}$ satifies $\Phi\left(D_{0}\right)=0$ and $\Phi\left(D_{i}\right) \geq 0 \forall i$ then we can define

$$
T^{\text {amort }}\left(\mathcal{O}_{i}\right):=T^{\text {actual }}\left(\mathcal{O}_{i}\right)+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

* This is often written as

$$
T^{\text {amort }}(\mathcal{O}):=T^{\text {actual }}(\mathcal{O})+\Phi^{\text {after }}-\Phi^{\text {before }}
$$

- Lemma: this satisfies $\sum_{i=0}^{n} T^{\text {actual }}\left(\mathcal{O}_{i}\right) \leq \sum_{i=0}^{n} T^{\text {amort }}\left(\mathcal{O}_{i}\right)$
- Proof:

$$
\begin{aligned}
\sum_{i=0}^{n} \hat{c}_{i} & =\sum_{i=0}^{n}(c_{i}+\overbrace{\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)}^{\text {telescoping summation }}) \\
& =\left(\sum_{i=0}^{n} c_{i}\right)+\overbrace{\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right)}^{\geq 0 \text { for upper bound }} \leq \sum_{i=0}^{n} c_{i}
\end{aligned}
$$

Example: potential method analysis of dynamic arrays

- Define potential function $\Phi(i)=\max \{0,2 \cdot$ size - capacity $\}$
- To make analysis easier set time units such that

$$
\left.T^{\text {actual }} \text { (insert }\right) \leq 1 \quad \text { and } \quad T^{\text {actual }}(\text { resize }) \leq n
$$

- insert increases size while not changing capacity

$$
\begin{gathered}
\Delta \Phi=\Phi^{\text {after }}-\Phi^{\text {before }} \leq 2-0=2 \\
\left.T^{\text {amort }}(\text { insert })=T^{\text {actual }} \text { (insert }\right)+\Delta \Phi \leq 1+2=3 \in O(1)
\end{gathered}
$$

- rebuild happens only when size $=$ capacity $=n$ and sets capacity to $2 n$

$$
\begin{aligned}
\Phi^{\text {before }} & =2 n-n=n \quad \text { and } \quad \Phi^{\text {after }}=2 n-2 n=0 \\
T^{\text {amort }}(\text { rebuild }) & =T^{\text {actual }}(\text { rebuild })+\Delta \Phi \leq n+(0-n)=0 \in O(1)
\end{aligned}
$$

- As a result the amortized run-time of dynamic arrays is $O(1)$

There is no general recipe to find potential functions but we have some guidelines:

- Study the expensive operation to find what gets smaller when it occurs
- Dynamic arrays: rebuild increases capacity so - capacity gets smaller
- Study the conditions $\Phi(\cdot) \geq 0$ and $\Phi(0)=0$
- Dynamic arrays: have capacity ≤ 2. size so

$$
2 \cdot \text { size }- \text { capacity } \geq 0
$$

- We can add a $\max \{0, \ldots\}$ so that $\Phi(0)=0$
- Then compute the amortized time and see if you get good bounds

Scapegoat Trees

AVL-trees in practice are quite expensive due to large overhead from rotations, a scapegoat tree is a balanced binary search tree that is maintained without rotations.

Idea: instead of performing local changes (rotations) we wait a while before performing a global rebuild on a subtree. Using this we can get $O(\log n)$ height with $O(\log n)$ amortized time for all operations.

Definition: fix α with $\frac{1}{2}<\alpha<1$ then a scapegoat tree is a BST where every node v with a parent has

$$
v . \text { size } \leq \alpha \cdot v \text {.parent.size }
$$

Example of a scapegoat tree with $\alpha=2 / 3$

- v.size is needed during updates so it must be stored in each node
- Since each subtree is a constant fraction smaller for height h we have

$$
1 \leq \alpha^{h} n \quad \rightarrow \quad\left(\frac{1}{\alpha}\right)^{h} \leq n \quad \rightarrow \quad h \leq c \log n \quad \rightarrow \quad h \in O(\log n)
$$

- Since a leaf is of size 1 and has at most h parents we have $1 \leq \alpha^{h} n$

Scapegoat tree operations

- search: same as a BST, has O (height $)=O(\log n)$
- insert and delete: requires occasionally restructuring a subtree into a perfectly balanced tree
- Perfectly balanced trees have for all nodes z

$$
\mid \operatorname{size}(z . \text { left })-\operatorname{size}(z . \text { right }) \mid \leq 1
$$

Example of a perfectly balanced tree

- This restructuring is done at the highest node that violates the scapegoat tree size-condition

Example:

- Scapegoat::insert(50)

- Scapegoat::insert(40)

After we rebalance the subtree the whole tree will respect the size condition because we restructured the highest violating node.

Scapegoat tree insertion algorithm:

```
scapegoatTree::insert(k, v)
    z \leftarrow BST::insert(k, v)
    S \leftarrow stack initialized with z
    while (p\leftarrowz.parent /= NIL) // update sizes, get path
        increase p.size
        S.push(p)
        z}\leftarrow\textrm{p
    while (S.size \geq 2) // size-condition violated?
        p\leftarrowP.pop()
        if (p.size < \alpha e max{p.left.size, p.right.size})
        rebuild subtree at p into perfectly balanced tree
        return
```

Rebuilding at p (line 11) can be done in O (p.size) time by converting the BST to a sorted list then converting that list into a perfectly balanced BST.

Scapegoat Tree Analysis

Relative to the rest of the operations, rebuilding at P is quite expensive:

Claim: if we rebuild at p, then

$$
\left|n_{L}-n_{R}\right| \geq(2 \alpha-1) n+1
$$

Proof: assume wlog $n_{R} \geq n_{L}$ then we know that $n=n_{L}+n_{R}+1$ and $n_{R}>\alpha n$ so

$$
\begin{aligned}
2 n_{R} & >2 \alpha n \\
n_{R}+\left(n-n_{L}-1\right) & >2 \alpha n \\
n_{R}-n_{L} & >(2 \alpha-1) n+1 \\
\left|n_{L}-n_{R}\right| & \geq(2 \alpha-1) n+1
\end{aligned}
$$

The potential function should involve $\sum_{v} \mid \operatorname{size}(v . l e f t)-\operatorname{size}(v$. right $) \mid$

The goal for the potential function is to amortize the most expensive operation to 0 so we want

$$
T^{\text {amort }}(\text { rebuild })=0 \leq n+\Delta \Phi
$$

So we need $\Delta \Phi=-n$ which can be found by looking at what goes down during the rebuild

- This will not work because there are some nodes without children that get children after rebalance

$$
\Phi_{1}(i)=\sum_{v} \mid \operatorname{size}(v . \text { left })-\operatorname{size}(v . \text { right }) \mid
$$

- This will cause possible negative values for the potential function

$$
\Phi_{2}(i)=\sum_{v}(\mid \operatorname{size}(v . \text { left })-\operatorname{size}(v . \text { right }) \mid-1)
$$

- This one fulfills all the requirements

$$
\left.\Phi_{3}(i)=\sum_{v} \max \{0, \mid \operatorname{size}(v . \text { left })-\operatorname{size}(v . \text { right }) \mid-1)\right\}
$$

- Our final potential function will include a $c>0$ for later adjustements

$$
\left.\Phi(i)=c \sum_{v} \max \{0, \mid \operatorname{size}(v . \text { left })-\operatorname{size}(v . \text { right }) \mid-1)\right\}
$$

We have $\Phi(i) \geq 0$ and $\Phi(0)=0$ so Φ is a potential function

$$
T^{\text {amort }}(\mathcal{O})=T^{\text {actual }}(\mathcal{O})+\Phi^{\text {after }}-\Phi^{\text {before }}
$$

- search does not change the data structure so $\Delta \Phi=0$

$$
T^{\text {actual }}(\text { search }) \leq \log n \quad \rightarrow \quad T^{\text {amort }}(\text { search }) \leq \log n
$$

- insert and delete increases contribution at ancestors by at most 1 and does not increase others

$$
\Delta \Phi=c \sum_{v} \Delta \Phi_{v} \leq c \cdot \underbrace{\# \text { ancestors of } z}_{O(\log n)} \quad \rightarrow \quad T^{\text {amort }}(\text { insert }) \leq \log n+c \cdot c^{\prime} \log n \in O(\log n)
$$

- rebuild decreases contribution at p by $(2 \alpha-1) n+1$ and does not increase other contributions

$$
\Phi=c \sum_{v} \Phi_{v} \quad \rightarrow \quad \Delta \Phi=\Phi^{\text {after }}-\Phi^{\text {before }}=c \sum_{v}\left(\Phi_{v}^{\text {after }}-\Phi_{v}^{\text {before }}\right)
$$

There are three cases for v

- Case 1: v is not in the subtree of p

$$
\Phi_{v}^{\text {after }}=\Phi_{v}^{\text {before }} \quad \rightarrow \quad \Delta \Phi_{v}=0
$$

- Case 2: v is in the subtree of p, then after rebuilding v perfectly balanced

$$
\mid v . \text {.eft.size }-v . \text {.right.size } \mid \leq 1 \quad \rightarrow \quad \Phi_{v}^{\text {after }}=0 \quad \Phi_{v}^{\text {before }} \geq 0 \quad \rightarrow \quad \Delta \Phi_{v} \leq 0
$$

- Case 3: v is p

$$
\begin{gathered}
\Phi_{p}^{\text {after }}=0 \\
\Phi_{p}^{\text {before }}=\max \{0, \mid p \text {.left.size }-p \text {.right.size } \mid-1\} \\
\geq \max \left\{0,(2 \alpha-1) n_{p}+1-1\right\} \\
\geq(2 \alpha-1) n \\
\Delta \Phi_{p} \leq-(2 \alpha-1) n
\end{gathered}
$$

Now we have

$$
\begin{aligned}
T^{\text {amort }(\text { rebuild })} & =T^{\text {actual }}(\text { rebuild })+\Delta \Phi \\
& \leq n+c \sum_{v} \Delta \Phi_{v} \\
& \leq n+c(-(2 \alpha-1) n) \\
& \leq(1-c(2 \alpha-1)) n
\end{aligned}
$$

Finally we have

$$
c=\frac{1}{2 \alpha-1} \quad \rightarrow \quad T^{\text {amort }}(\text { rebuild }) \leq 0
$$

Thus the amortized cost of rebuild is free
We have an amortized run-time for search, insert, and delete being in $O(\log n)$

Skip Lists

Definition: skip lists are a hierarchy S of ordered linked lists levels S_{0}, \ldots, S_{h}

Example of a skip list

- Each list S_{i} contains special keys $-\infty$ and $+\infty$ (sentinels)
- Only S_{0} contains KVPs and they are ordered in non-decreasing order
- Other lists stores only kyes, or links to nodes in S_{0}
- Each list is a subsequence of the previous one, i.e. $S_{0} \subseteq \cdots \subseteq S_{h}$
- List S_{h} contains only sentinels, the left of which is the root (top left blue arrow)

- Each KVP belongs to a tower of nodes (blue dashed box)
- Each node p has references to p.after and p.below

Search in Skip Lists

search, insert, delete all use the getPredecessors(k) method gets a list of nodes leading up the node that is right before where k would be

```
getPredecessors (k)
    p}\leftarrow\mathrm{ root
    P}\leftarrow\mathrm{ stack of nodes, initially containing p
    while p.below != NIL do
        p}\leftarrow\mathrm{ p.below
        while p.after.key < k do p \leftarrow p.after
        P.push(p)
    return P
```

To search for a specific item in the skip list we find the predecessor node then check the node after.

```
skipList::search(k)
    P}\leftarrow\mathrm{ getPredecessors(k)
    p0\leftarrowP.top() // predecessor of k in S0
    if p0.after.key = k return p0.after
    else return "not found, but would be after p0"
```

Example: search(87)
\square key compared with k
\square added to P

Insert in Skip Lists

skipList::insert(k,v)

- Randomly repeatly toss a coin until you get a tails
- Negative binomial distribution on number of heads
- Let i be the number of heads
- Then the key k should be in the lists S_{0}, \ldots, S_{i}
- This gives k a tower with height i the probability

$$
P(\text { tower of key } k \text { has height } \geq i)=\left(\frac{1}{2}\right)^{i}
$$

- As needed we also increase the height h of the skip list, such that $h>i$
- Use getPredecessors(k) to get stack P
- The top i items of P are the precessors p_{0}, \ldots, p_{i} of where k should be in each list S_{0}, \ldots, S_{i}
- Finally insert (k, v) after p_{0} in S_{0}, and k after p_{j} in S_{j} for $1 \leq j \leq i$

Example:

- skipList::insert(52,v)
- Coin tosses: $H, T \Longrightarrow i=1$ then we call getPredecessors(52)

- Now create a tower of height 1 for the key 52

- skipList::insert(100,v)
- Coin tosses: $H, H, H, T \Longrightarrow i=3$ then we perform a height increase

- Make a call to getPredecessors(100)

- Create a tower of height 3 for the key 100


```
skipList::insert(k, v)
    P}\leftarrow\mathrm{ getPredecessors(k)
    for (i \leftarrow 0; random(2) = 1; i \leftarrow i+1) {} // random tower height
    while i \geq P.size() // increase skip-list height?
        root \leftarrow new sentinel-only list, linked in appropriately
        add left sentinel of root at bottom of stack P
    p\leftarrowP.pop() // insert (k, v) in S_0
    z_below \leftarrow new node with (k, v), inserted after p
    while i > 0 // insert k in S_1, . . . , S_i
        p\leftarrowP.pop()
        z}\leftarrow\mathrm{ new node with k added after p
        z.below \leftarrow z_below; z_below \leftarrow z
        i}\leftarrow i - 1
```


Delete in Skip Lists

It is easy to remove a key since we have getPredecessors. Then eliminate extra layers if there are multiple ones with only sentinels.

```
skipList::delete(k)
    P}\leftarrow\mathrm{ getPredecessors(k)
    while P is non-empty
        p}\leftarrow\textrm{P}.\textrm{pop() // predecessor of k in some layer
        if p.after.key = k
            p.after }\leftarrow\textrm{p}.\mathrm{ after.after
        else break // no more copies of k
    p}\leftarrowl\mathrm{ left sentinel of the root-list
    while p.below.after is the }\infty\mathrm{ -sentinel
        // the two top lists are both only sentinels, remove one
        p.below }\leftarrow\mathrm{ p.below.below
        p.after.below \leftarrow p.after.below.below
```

Example: skipList::delete(65)

- Make a call to getPredecessors(65)

- Delete the key and its tower

- Perform a height decrease

Analysis of Skip Lists

- Expected space: $O(n)$
- Expected height: $O(\log n)$
- For all operations:
- How often do we drop down (execute $p \leftarrow p$.below)
- How often do we step forward (execute $p \leftarrow p$.after)
- skipList::search: $O(\log n)$ expected time
- \# drop-downs = height
- expected \# forward-steps is ≤ 1 in each level
- expected total \# forward-steps is in $O(\log n)$
- skipList::insert: $O(\log n)$ expected time
- skipList::delete: $O(\log n)$ expected time

We have $O(n)$ expected space and all operations take $O(\log n)$ expected time.

Remarks:

- We can show that a biased coin-flip to determine tower-height gives smaller expected run-times
- Can save links (hence space) by implementing towers as an array

- Then skip lists are simple to implement. They are also fast with good cache locality but can still suffer from cache misses.

Re-ordering Items

Recall using a unordered list to implement ADT dictionary. While lists are simple and popular we cannot make them any more effective in practice, unless, we have some knowledge of the item access probabilities.

For short lists with extremely unbalanced distributions this can be much faster than AVL trees or Skip Lists and much easier to implement.

Static Ordering

For static orderings sorting items by non-increasing access-probabilities minimizes expected access cost. (proof idea: for any other ordering, exchanging two out of order items makes total cost decrease)

Example: static ordering with full knowledge of access probabilities

key	A	B	C	D	E
frequency of access	2	8	1	10	5
access probability	$2 / 26$	$8 / 26$	$1 / 26$	$10 / 26$	$5 / 26$

For accessing the key in the i th position we count the cost as $i+1$

- Order A, B, C, D, E has expected access cost of

$$
\frac{2}{26} \cdot 1+\frac{8}{26} \cdot 2+\frac{1}{26} \cdot 3+\frac{10}{26} \cdot 4+\frac{5}{26} \cdot 5=\frac{86}{26} \approx 3.31
$$

- Order D, B, E, A, C has expected access cost of

$$
\frac{10}{26} \cdot 1+\frac{8}{26} \cdot 2+\frac{5}{26} \cdot 3+\frac{2}{26} \cdot 4+\frac{1}{26} \cdot 5=\frac{66}{26} \approx 2.54
$$

Dynamic Ordering

If we do not know the access probabilities ahead of time we still have the temporal locality heuristic which says that the most recently accessed items is likely to be used soon again.

- Move-To-Front (MTF) heuristic: upon a successful search, move the accessed item to front

- MTF can be done with an array, but, insert and search should start from the back so we have room to grow
- Transpose heuristic: upon successful search, swap the accessed item with the item immediately preceding it

- Transpose does not adapt quickly to changing access patterns

In pratice MTF works pretty well and it can be shown that it is 2-competitive (not more than twice as bad as the optimal static ordering)

More on Dictionaries

Expected height of BST

Assume we randomly choose a permuation of $\{0, \ldots, n-1\}$ and build a BST in this order:

Theorem: expected height of a BST is $O(\log n)$
Proof: (NEEDS WORK) Let π be the root node and $H(\pi)$ the be height of the tree

$$
H(\pi)=1+\max \left\{H\left(\pi_{L}\right), H\left(\pi_{R}\right)\right\}
$$

We also let

$$
y(\pi)=2^{H(\pi)} \quad \rightarrow \quad y(n)=E[y(\pi)]
$$

Then since \log is concave we have

$$
H(n)=E[H(\pi)]=E[\log (y(\pi))] \leq \log [E(y(\pi))]
$$

To complete this we just show that $E[y(\pi)] \leq(n+1)^{3}$ which can be done by proof by induction

This does not imply that the average height of a BST is $O(\log n)$

- The average height is $\Theta(\sqrt{n})$ (no details)
- Average height (over all BST) \neq expected height (over all randomly built BST)
- This difference is most obvious for $n=3$
- Expected height over 6 possible permutations is

$$
\frac{1}{6}(2+2+1+1+2+2) \approx 1.66
$$

- Average height over 5 possible BST is

$$
\frac{1}{5}(2+2+1+2+2) \approx 1.8
$$

Randomization does not automatically imply an average-case bound, it depends on what we average over and how we randomize.

Treap

To build a binary search tree that acts if it had been built in random insertion order we use a BST but also store a priority with each node.

- Priorities are a permuation of $\{0, \ldots, n-1\}$
- The permuation should be picked randomly and all permutations should be equally likely
- Apply heap order property to priorities (decreasing downwards)
- The treap ($=$ tree + heap) can be stored in array P where $P[i]$ stores the node with priority i

A treap is a BST with respect to the KVP and a max heap with respect to the priorities.
The treap is the BST that results from inserting KVP $p=n-1$, then KVP $p=n-2$, etc while maintaining BST onrder on the KVP (this gives us heap property on priorities due to order of insert).

Theorem: the expected height of a treap is $O(\log n)$
Proof: root-item has priority $n-1$, the rest of the priorities were picked randomly so proof of expected height of the BST applies

Treap Operations

Inserting a KVP into the treap we need to consider what priority to give it.

- We have a random permuation of $\{0, \ldots, n-2\}$ and want a random permuation of $\{0, \ldots, n-1\}$
- recall shuffle (inside-out-shuffle)

```
// A: array of size n stores (0,...,n-1)
shuffle(A)
    for i}\leftarrow1\mathrm{ to n-1 do
        swap(A[i], A[random(i + 1)])
```

* After iteration $n-2$ we have random permutation of $\{0, \ldots, n-2\}$
* After iteration $n-1$ we have random permutation of $\{0, \ldots, n-1\}$
* Idea: swap new item with a randomly item to make a random permutation one larger
- Begin by inserting the new item as if the treap was a BST
- Pick a random priority p (where $0 \leq p \leq n-1$) for the new item
- The item that had priority p now has priority $n-1$
- Perform fix-up with rotations to bubble the priorities upwards
* We fix the higher node first so lower node can assume proper treap structure above

Example: treap::insert(17)

Randomly pick priority $5 \in\{0, \ldots, 7\}$


```
treap::insert(k, v)
    n}\leftarrow\textrm{P}.\mathrm{ size // current size
    z \leftarrow BST::insert(k, v); n++
    p}\leftarrow\operatorname{random(n)
    if p < n-1 do
        z' \leftarrowP[p], z'.priority }\leftarrow\textrm{n}-1,\textrm{P}[\textrm{n}-1]\leftarrow\mp@subsup{z}{}{\prime
        fixUpWithRotations(z')
    z.priority }\leftarrow\textrm{p};P[p]\leftarrow
    fixUpWithRotations(z)
```

treap::fixUpWithRotations(z)
while ($y \leftarrow z$.parent is not NIL and z.priority $>$ y.priority) do
if z is the left child of y do rotate-right(y)
else rotate-left(y)

- Since the result is a randomized BST the expected height is $O(\log n)$
- This implies $O(\log n)$ expected time for search and insert
- delete can be handled in a similar manner we have seen but needs more exchanges
- Large space overhead due to parent-pointers, priorities, P itself
- Extra space overhead is pretty worth if we can get much faster operations
- There are methods to avoid some of the space overhead

This is not particularly efficient in practice for the things we are currently considering (later we will give priorities have meaning \rightarrow cartesian trees for range searches)

Optimal Static BST

- Static: the access frequencies are known (offline algorithm)
- Dynamic: access frequencies are inferred from usage (online algorithm)

When finding the optimal static order it is natural to use a greedy algorithm.

- Put item with highest access probability at the root
- Then insert insert tree in order of access probabilities (from highest to lowest)
- Keys need to respect the BST order-property

This greedy-algorithm is pretty good but does not actually give the optimum!

- To actually find the optimum we need to effectively try all possible BST
- Native method would take exponential time so we speed up using dynamic programming
- Idea: store and re-use solutions of subproblems to achieve polynomial run-time

More details in CS 341 (for dynamic programming).

Example:

k_{i}	A	B	C	D	E
$P\left(k_{i}\right)$	$5 / 26$	$8 / 26$	$1 / 26$	$10 / 26$	$2 / 26$

Access-cost $=\sum_{k} P(k) \cdot(1+$ depth of $k)=1 \cdot \frac{10}{26}+2 \cdot \frac{8}{26}+2 \cdot \frac{2}{26}+3 \cdot \frac{5}{26}+3 \cdot \frac{1}{26}=\frac{48}{26}$
The optimal solution for this is:

$$
\text { Access-cost }=\sum_{k} P(k) \cdot(1+\text { depth of } k)=1 \cdot \frac{8}{26}+2 \cdot \frac{5}{26}+2 \cdot \frac{10}{26}+3 \cdot \frac{1}{26}+3 \cdot \frac{2}{26}=\frac{47}{26}
$$

MTF-Heuristic for a BST

In the move-to-front heuristic the front is the place that is easiest to access which in a BST is the root.
So applying MTF-heuristic to a BST, we use rotations to bring the accessed node to the top.

Example: BST-MTF::search(18)

This should work well, but we can do better by moving it up two levels at a time.

This is actually really bad because there are cases when we end up needing to rotate the entire tree.

Example: BST of 70, 60, 50, 40 (inserted in that order) then insert 40

- MTF would require us to rotate tree until 40 is root (rotates over the entire tree)
- The resulting height will be one more than previous

The issue is that our rotations have too much symmetry so our height stays the same after each rotate.

Splay tree

A BST with no extra information (e.g. height, balance, size) at nodes with amortized run-time $O(\log n)$

- After search/inesrt, bring accessed node to the root with rotations
- Move node up two layers at a time (except when near root)
- Use zig-zig-rotation or zig-zag-rotation to move up two levels

Let z the node that we want to move up and p and g be parent and grandparent.

- Zig-zag rotation: if they are in zig-zag formation, apply a double-rotation

- Zig-zig rotation: if they are in zig-zig formation, apply left rotation at g then left rotation at p


```
SplayTree::insert \((k, v)\)
1. \(\quad z \leftarrow B S T:: i n s e r t(k, v)\)
2. while ( \(z\) is not the root)
3. \(\quad p \leftarrow z\).parent
4. if ( \(z\) is the left child of \(p\) )
5. if ( \(p\) is the root) rotate-right \((p)\)
6. \(\quad\) else \(g \leftarrow p\).parent
7.
                case © : // Zig-zig rotation
```



```
8. (8) : // Zig-zag rotation
                                    rotate-right( \(p\) )
                                    rotate-left ( \(g\) )
9. else ... // symmetric case, \(z\) is right child
```

search and delete use the BST-method then rotate the lowest visited node up.

- This code assumed parent-references which can be avoided by storing search-path

Example: SplayTree::search(18)

You may notice that this result is actually worse than when using single rotations:

With zig-zig rotations:

$$
5257
$$

With single rotations:

(52) 57

Example: however we will see where it really works when when use a different initial tree

With zig-zig rotations:

(20)
(10)

10
(20)
(30)

With single rotations:

(20)

10

40

30
10
(20)

Splay tree intuition:

- For any node on the search-path, the depth (roughly) halves
- For all nodes, depth increases by at most 2

Theorem: in a splay tree, all operations take $O(\log n)$ amortized time
Proof: (see textbook) (formal proof does not follow intuition and uses a potential function)

Dictionaries for Special Keys

Search

Lower Bound for Search

The fastest realization of ADT Dictionary requires $\Theta(\log n)$ time to search among n items.
Theorem: Under the comparision model, $\Omega(\log n)$ comparisons are required to search a size n dictionary
Proof: via decision tree for items x_{0}, \ldots, x_{n-1}

k can be found at the n items x_{0}, \ldots, x_{n-1} or in the $n+1$ cases when k is between items x_{i} and x_{j}. Thus all together the number of leaves is bounded from below by $2 n+1$ so:

$$
n \leq 2 n+1 \leq \# \text { of leaves } \leq 2^{h} \quad \rightarrow \quad \log n \leq h \quad \rightarrow \quad h \in \Omega(\log n)
$$

However recall from sorting that we may be able to beat this lower bound if we had certain properties.

Binary Search

Recall that the binary search algorithm and its run-times and its runtime of $\Theta(\log n)$ on a sorted array

```
// A: Sorted array of size n, k: key
binary-search(A, n, k)
    \ell}\leftarrow0,\textrm{r}\leftarrow\textrm{n}-
    while ( }\ell\leqr\mathrm{ )
        m}\leftarrow\lfloor(\ell+r)/2
        if (A[m] == k) then return "found at A[m]"
        else if (A[m] < k) then }\ell\leftarrowm+
        else r }\leftarrowm-
    return "not found, but would be between A[\ell-1] and A[\ell]"
```


Interpolation Search

Binary search does not assume anything about the keys are distributed between the max and min keys, however, if we can say that they can uniformly distributed then interpolation search can perform better.
Interpolation search performs a linear interpolation using the lower and upper key values then finds a index would give k if there is a linear relationship between index and key.

$$
\text { left index: } \ell \quad \text { right index: } r \quad \text { search key: } k \quad \text { key at } i: A[i]
$$

$$
\text { binary search: } \ell+\left\lfloor\frac{1}{2}(r-\ell)\right\rfloor \quad \text { interpolation search: } \ell+\left\lfloor\frac{k-A[\ell]}{A[r]-A[\ell]}(r-\ell)\right\rfloor
$$

- Binary search just takes the middle index value
- Interplation search finds how far k is between $A[\ell]$ and $A[r]$ and converts that to an index value

```
// A: Sorted array of size n, k: key being search for
interpolation-search(A, n, k)
    \ell}\leftarrow0,r\leftarrown-
    while ( \ell \leq r)
        if (k < A[\ell] or k > A[r]) return "not found"
        if (k == A[r]) then return "found at A[r]"
        m}\leftarrow\ell+\lfloor(r - \ell)((k-A[\ell])/(A[r]-A[\ell]))\rfloor
        if (A[m] == k) then return "found at A[m]"
        else if (A[m] < k) then \ell \leftarrowm + 1
        else r }\leftarrowm-
    // We always return from somewhere within while-loop
```

Example: interpolation-search (A[0. .10], 449a

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	449	450	600	800	1000	1200	1500

- Initially begin with $\ell=0$ and $r=n-1=10$

$$
m=\ell+\left\lfloor\frac{449-0}{1500-0}(10-0)\right\rfloor=\ell+2=2
$$

- Since $A[2]=2<k=449$ we update $\ell=m+1=3$ and keep $r=10$

$$
m=\ell+\left\lfloor\frac{449-3}{1500-3}(10-3)\right\rfloor=\ell+2=5
$$

- Since $A[4]=449=k$ we found k at index 4

This works well if the keys are uniformly distributed:

- Recurrence relation is $T^{(\text {avg })}(n)=T^{(\text {avg })}(\sqrt{n})+\Theta(1)$
- Recurrence relation resolves to $T^{(a v g)}(n) \in \Theta(\log \log n)$

However the worst case performance is $\Theta(n)$ (occurs when keys increase, e.g. $A[i]=10^{i}$)

Trie

Definition: Trie (also known as a radix tree) is a dictionary for bitstrings

- Name comes from retrieval, but pronunced as "try"
- Each edge of the tree is labelled with a bit and comparisons are done bitwise.
- Requires: dictionary is prefix-free (no string is a prefix of another)
- Alternative: satisfied if all strings have the same length
- Alternative: satisifed if all strings end with some end-of-word character (we will use \$)
- The items (keys) are stored only in the leaf nodes

Example:

$\{00 \$, 0001 \$, 0100 \$, 011 \$, 0110 \$, 110 \$, 1101 \$, 111 \$\}$

Trie Operations

Performing search of x on a trie:

- start form the root and the most significant (first) bit of x
- follow the link that corresponds to the current bit in x
- return failure if link is missing
- return success if we reach a leaf (it must store x)
- else recurse on the new node and go to the next bit of x

```
// v: node of trie; d: level of v, x: word stored as array of chars
Trie::search(v \leftarrow root, d \leftarrow0, x)
    if v is a leaf
        return v
    else
        let v' be child of v labelled with x[d]
```

```
if there is no such child
    return "not found"
else Trie::search(v', d + 1, x)
```


Examples:

- Trie::search(011\$) success

- Trie::search(0111\$) unsuccessful

insert and delete are simple extensions of search:
- Trie::insert(x)
- search for x (should be unsuccessful)
- We finish the search at a node v that does not have a child for the current bit of x
- Expand the trie from node v by adding necessary nodes that correspond to extra bits of x
- Trie::delete (x)
- Search for x (should be successful)
- Let v be the leaf where x is found
- Delete v and ancestors of v until reaching an ancestor with two or more children

For all operations the time complexity is $\Theta(|x|)$ (where $|x|$ is the length of binary string x)

Examples:

- Trie::insert(0111\$)

- Trie::delete(01001\$)

Trie Variations

- Variation 1: no leaf labels
- Key is stored implicitly through the characters along the path to the leaf
- Halves the amount of the space needed

- Variation 2: allow proper prefixes
- Allow internal nodes to represent keys (use flag to indicate such nodes)
- No need for end-of-word character \$
- 0-child and 1-child can be expressed as left and right child of a binary tree

- Variation 3: pruned trie
- Stop adding nodes as soon as the key is unique
- Note that each leaf must now store the full key
- Saves space if only a few bitstrings are long and can store infinite bitstrings (e.g. real numbers)
- More efficient but operatios get a bit more complicated

- Variation 4: compressed trie
- Compress paths of nodes with only a single child
- Each node stores an index, corresponding to the depth in the uncompressed trie
* Use this index to know which bit of x to test against
- A compressed trie with n keys has at most $n-1$ internal nodes
- Also known as Particia-tries:
* Practical Algorithm To Retrieve Information Coded In Alphanumeric

Compressed Trie Operations

Just like with the basic trie search is used in every compressed trie operation

```
// v: node of trie; x: word
CompressedTrie::search(v \leftarrow root, x)
    if v is a leaf
        return strcmp(x, v.key)
```

```
d}\leftarrow\mathrm{ index stored at v
if x has at most d bits
    return "not found"
v'}\leftarrow\mathrm{ child of v labelled with x[d]
if there is no such child
    return "not found"
CompressedTrie::search(v', x)
```


Examples:

- CompressedTrie::search(10\$)

- CompressedTrie::search(101\$)

- CompressedTrie::search(1\$)

- CompressedTrie::search(x)
- Start form the root and the bit of x indicated at that node
- Follow the link that corresponds to the current bit in x
* Return failure if the link is missing
- If we reach a leaf, expicitly check whether word stored at leaf is x
- Else recurse on the new node and the bit of x indicate for that node
- CompressedTrie::delete(x)
- Perform $\operatorname{search}(x)$
- Remove the node v that stored x
- Compress along path to v whenever possible
- CompressedTrie::insert(x)
- Perform $\operatorname{search}(x)$
- Let v be the node where the search ended
- Conceptually simplest approach:
* Uncompress path from root to v
* Insert x as in an uncompressed trie
* Compress paths from root to v and from root to x
- This can also be done by only adding those noded as they are needed
* Requires leaf-links where each node stores a link to a leaf that is a descendant

All these operations take $O(|x|)$ time.
This is much more complicated, but the space-saving can be worth it if the words are unevenly distributed.

Multiway Tries

In order to represent strings over any fixed alphabet Σ we use a multiway trie:

- Allow nodes to have at most $|\Sigma|+1$ children (one child for end-of-word character $\$$)
- Example: a multiway trie holding strings \{bear\$, ben\$, be\$, soul\$, soup\$\}

- A compressed multiway trie is compressed in the same way as a compressed trie
- Example: a compressed multiway trie holding strings \{bear\$, ben\$, be\$, soul\$, soup\$\}

The operations $\operatorname{search}(x), \operatorname{insert}(x)$, delete (x) are exactly the same as before, but, the runtime is now:

$$
O(|x| \cdot(\text { time to find appropriate child }))
$$

Each node has up to $|\Sigma|+1$ children and there are multiple ways to store them:

- Solution 1: array of size $|\Sigma|+1$ for each node
- $O(1)$ time to find child
- $O(|\Sigma|)$ space per node
- Solution 2: linked list of children for each node
- $O(|\Sigma|)$ time to find child
- O (\# children) space per node
- Solution 3: dictionary (e.g. AVL-tree) of children for each node
- $O(\log (\#$ children $))$ time to find child
- $O(\log (\#$ children $))$ space per node
- Best in theory, but not worth it in practice unless $|\Sigma|$ is huge

In practice, use hashing (since keys are in a typically small range Σ)

Dictionaries Via Hashing

Direct Addressing

For a known $M \in \mathbb{N}$, let every key k be an integer with $0 \leq k<M$.
Then we can implement a dictionary using an array T of size M that stores (k, v) via $T[k] \leftarrow v$

- $\operatorname{search}(k)$: check if $T[k]$ is NIL
- $\operatorname{insert}(k, v): T[k] \leftarrow v$
- delete $(k): T[k] \leftarrow$ NIL

Each operation is $\Theta(1)$ and total space is $\Theta(M)$

This is called direct addressing (using key as the array's index) and it has two issues:

- Cannot be used if the keys are not integers
- Wastes space if M is unknown or $n \ll M$

Idea: use a hash to map arbitrary keys into integers in range $\{0, \ldots, M-1\}$ then use direct addressing:

- We assume all keys come from some universe U (typically $U=\mathbb{Z}_{\geq 0}$, sometimes may be finite)
- The hashing function is defined as $h: U \rightarrow\{0, \ldots, M-1\}($ commonly use $h(k)=k \bmod M)$
- We call the array T of size M the hash table
- An item with key k should ideally be stored in slot $h(k)$, i.e. $T[h(k)]$

Example: $U=\mathbb{N}, M=11, h(k)=k \bmod 11$

hash table stores: 7, 13, 43, 45, 49, 92

Hash Collisions

Definition: A hash collision occurs when inputs hash to the same output
Generally the hash function h is not injective (many keys may map to the same integer)

- e.g. $h(46)=2=h(13)$ if $h(k)=k \bmod 11$
- Then we have a case where we want to insert (k, v) but $T[h(k)]$ is already occupided There are many solutions to this problem:

Chaining

The most straightforward solution to collisions is to have each slot of the T store a bucket.

- Each bucket contains 0 or more KVPs
- Usually use a unsorted linked list (but any dictionary realization, even another hash table works)
- This method of collision resolution (via linked list) is called chaining

Operations:

- $\operatorname{search}(k)$: look for key k in the list at $T[h(k)]$ (apply MTF-heuristic)
- $\operatorname{insert}(k, v)$: add (k, v) to the front of the list at $T[h(k)]$
- delete (k) perform a search, then delete form the linked list

Example: $M=11, h(k)=k \bmod 11$

- $\operatorname{insert}(41)(h(41)=8)$

- $\operatorname{insert}(46)(h(46)=2)$

Complexity of Chaining

- insert takes time $\Theta(1)$
- search and delete have run-time $\Theta(1+$ size of bucket $T[h(k)])$

We define $\alpha:=n / M$ as the load factor of the hash map.

Although the average bucket-size is α we cannot say the average case cost of search and delete is $\Theta(1+\alpha)$

- If all keys hash to the same slot then operations will take $\Theta(n)$
- To analyze what happens on average we switch to randomized hashing
- To randomize we assume that the hash-function is chosen randomly

Definition (Uniform Hashing Assumption): any possible hash function is equally likely to be chosen

- This is not realistic, but it is close enough and makes analysis possible
- We can show that for any key k and slot i

$$
P(h(k)=i)=\frac{1}{M}
$$

and that the hash-values of any two keys are independent of each other

- Using this assumption, each key of the disctionary is expected to collide with $(n-1) / M$ other keys

Lemma: the expected cost of search and delete is $\Theta(1+\alpha)$
Proof: under uniform hashing we have keys k_{1}, \ldots, k_{n} with two properties:

- $\forall j \in\{0, \ldots, M-1\}$ and $\forall i \in\{0, \ldots, n\}$

$$
\operatorname{Pr}\left(h\left(k_{i}\right)=j\right)=\frac{1}{M}
$$

- $\forall j, j^{\prime} \in\{0, \ldots, M-1\}$ and $\forall i, i^{\prime} \in\{1, \ldots, n\}$ with $i \neq i^{\prime}$

$$
\operatorname{Pr}\left(h\left(k_{i}\right)=j \text { and } h\left(k_{i}\right)=j^{\prime}\right)=\operatorname{Pr}\left(h\left(k_{i}\right)=j\right) \cdot \operatorname{Pr}\left(h\left(k_{i^{\prime}}\right)=j^{\prime}\right)=\frac{1}{M^{2}} \quad \text { (iff independent) }
$$

The above are actually consequences of uniform hashing but many people will actually use these results as the definition of uniform hashing.

- Then $\forall i, i^{\prime} \in\{1, \ldots, n\}$ with $i \neq i^{\prime}$

$$
\operatorname{Pr}\left(h\left(k_{i}\right)=h\left(k_{i^{\prime}}\right)\right)=\sum_{j=0}^{M-1} \underbrace{\operatorname{Pr}\left(h\left(k_{i}\right)=h\left(k_{i^{\prime}}\right)=j\right)}_{1 / M^{2}}=M \frac{1}{M^{2}}=\frac{1}{M}
$$

- Let

$$
\chi_{i i^{\prime}}= \begin{cases}0 & \text { if } h\left(k_{i}\right) \neq h\left(k_{i^{\prime}}\right) \\ 1 & \text { if } h\left(k_{i}\right)=h\left(k_{i^{\prime}}\right)\end{cases}
$$

- Then

$$
\mathrm{E}\left[\# \text { of collision solving } k_{i}\right]=\sum_{i^{\prime} \neq i} E\left[\chi_{i i^{\prime}}\right]=\sum_{i^{\prime} \neq i} \frac{1}{M}=\frac{n-1}{M}
$$

In all collision resolution strategies run-time is in terms of the load factor $\alpha:=n / M$

- The larger the load factor the larger the bucket sizes and the slower the search/delete
- Load factor can be kept small by rehashing which is done by creating a hash table twice the size with new hash-function(s) and re-inserting all the items into the new table
- Rehashing costs $\Theta(M+n)$ but since it happens rearely we can amortize it away
- Also rehash when α gets too small so that $M \in \Theta(n)$ in order for space to always be in $\Theta(n)$
- If we maintain $\alpha \in \Theta(1)$, then (under the uniform hashing assumption) the expected cost for hashing with chaining is $O(1)$ with space in $\Theta(n)$

Open Addressing

Idea: avoid the linking required for chaining by allowing key k to be in possible multiple slots search and insert follow a probe sequence of possible locations for key k :

$$
\langle h(k, 0), h(k, 1), h(k, 2), \ldots\rangle
$$

until an empty spot or k is found.
delete is a little problematic:

- We cannot leave an empty spot behind (may cause next search to termiate too early)
- Idea 1: move later items in probe sequence forward
- still problematic because may move stuff from other hashes
- Idea 2: lazy deletion: mark the spot as deleted instead of NIL
- if searching continue searching past deleted spot
- if inserting replace the delete spot with the new value

Linear Probing

The simplest method for open addresing is linear probing which is

$$
h(k, i)=(h(k)+i) \bmod M
$$

for some hash function h

Example: $M=11, h(k)=k \bmod 11, h(k, i)=(h(k)+i) \bmod 11$

- insert(41)

- insert(20)

$$
\begin{aligned}
& h(20,0)=9, \quad h(20,1)=10, \quad h(20,2)=0
\end{aligned}
$$

- delete(43)

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
	deleted

$$
h(43,0)=10
$$

- $\operatorname{search}(63)$ not found

$$
h(63,0)=8, \quad h(63,1)=9, \quad h(63,2)=10, \quad h(63,3)=0, \quad h(63,4)=1, \quad h(63,5)=2, \quad h(63,6)=3
$$

```
probe-sequence::insert(T,(k, v))
    for (j = 0; j < M; j++)
        if T[h(k,j)] is NIL or "deleted"
            T[h(k, j)] = (k, v)
            return "success"
    return "failure to insert" // need to re-hash
```

probe-sequence-search(T, k)
for ($\mathrm{j}=0 ; \mathrm{j}$ < M; j^{++})
if $\mathrm{T}[\mathrm{h}(\mathrm{k}, \mathrm{j})]$ is NIL
return "item not found"
else if T[h(k, j)] has key k
return T[h(k, j)]
// ignore "deleted" and keep searching
return "item not found"

Independent Hash Function

Some hashing methods require two hash functions h_{0} and h_{1}

- These hash functions hould be independent in the sense that

$$
P\left(h_{0}(k)=i\right) \text { and } P\left(h_{1}(k)=j\right)
$$

are independent

- This means we cannot pick two modular hash-functions

For the second hash function we can use the multiplication method:

$$
h(k)=\lfloor M(k A-\lfloor k A\rfloor)\rfloor
$$

- A is some floating-point number with $0<A<1$
- $k A-\lfloor k A\rfloor$ computes to just the fractional part of $k A$ which is in $[0,1)$
- Then we multiply by M to get a floating-point number in $[0, M)$
- Finally we round down to get an integer in $\{0, \ldots, M-1\}$

The quality of the key scrambling is dependent on how good the chosen A is:

- Notice that if we use $A=1 / 2$ we only have two keys and $A=1 / 3$ leads to only three keys
- Good scrambling can be achieved with $A=\varphi=\frac{\sqrt{5}-1}{2} \approx 0.618033988749 \ldots$
- We should use at least $\log |U|+\log |M|$ bits of A

Double Hashing

Definition: double hashing is performing open addressing with probe sequence

$$
h(k, i)=\left(h_{0}(k)+i \cdot h_{1}(k)\right) \bmod M
$$

- Assume h_{0} and h_{1} are two independent hash functions
- Assume that $h_{1}(k) \neq 0$ and that $h_{1}(k)$ is a relative prime with table-size M for all keys k
- This can be satisfied by choosing M to be prime
- Modify standard hash-functions to ensure that $h_{1}(k) \neq 0$
* e.g. modified multiplication moethod: $h(k)=1+\lfloor(M-1)(k A-\lfloor k A\rfloor)\rfloor$
search, insert, delete work just like for linear probing but with this different probe sequence.

Example: $M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 10 \varphi k-\lfloor\varphi k\rfloor\rfloor+1, \quad$ insert(194)

0	
1	45
2	13
3	194
4	92
5	49
6	
7	7
8	41
9	
10	43

$$
\begin{gathered}
h_{0}(194)=7 \quad h_{1}(194)=9 \\
h(194,0)=7, \quad h(194,1)=5, \quad h(194,2)=3
\end{gathered}
$$

Cuckoo Hashing

This requires two independent hash functions h_{0}, h_{1} and two tables T_{0}, T_{1}
Idea: an item with key k can only be at $T_{0}\left[h_{0}(k)\right]$ or $T_{1}\left[h_{1}(k)\right]$

- search and delete take constant time
- insert initially puts a new item into $T_{0}\left[h_{0}(k)\right]$
- If $T_{0}\left[h_{0}(k)\right]$ is occupied then we kick out current occupant and attempt to reinsert at $T_{1}\left[h_{1}(k)\right]$
* Each time we kick out an element we attempt to reinsert it in the other array
- This may lead to a loop of kicking out so we abort after too many attempts
- In the case of failure we rehash with a larger M and new hash functions insert may be slow, but is expected to be constant time if the load factor is small enough.

```
cuckoo::insert(k, v)
    i}\leftarrow
    do at most 2n times:
        if Ti[hi(k)] is NIL
            Ti[hi(k)]}\leftarrow(k, v
            return "success"
        swap((k, v), Ti[hi(k)])
        i}\leftarrow1-
    return "failure to insert" // need to re-hash
```

After $2 n$ iterations there is definitely a loop in the kicking out sequence (in practice should stop earlier).

Example: $M=11, h_{0}(k)=k \bmod 11, h_{1}(k)=\lfloor 11(\varphi k-\lfloor\varphi k\rfloor)\rfloor, \quad \operatorname{insert}(26)$

- $k=26, h_{0}(k)=4, h_{1}(k)=0$

- $k=59, h_{0}(k)=4, h_{1}(k)=5$

- $k=51, h_{0}(k)=7, h_{1}(k)=5$

- $k=95, h_{0}(k)=4, h_{1}(k)=7$

	T_{0}		T_{1}
0	44	0	
1		1	
2		2	
3		3	
4	26	4	
5		5	59
6		6	
7	51	7	
8		8	
9		9	92
10		10	

	T_{0}
0	44
1	
2	
3	
4	26
5	
6	
7	51
8	
9	
10	

More on Cuckoo hashing:

- The two hash-tables do not need to be of the same size
- Load factor $\alpha=n /\left(\right.$ size of $T_{0}+\operatorname{size}$ of $\left.T_{1}\right)$
- If the load factor α is small enough then insertion has $O(1)$ expected run-time $(\alpha<1 / 2)$

Variations on cuckoo hashing:

- The two hash-tables can be combined into one
- More flexible when inserting by considering both possible positions
- Use $k>2$ allowed locations (i.e. k hash-functions)

Summary of Open Addressing Strategies

For any open addressing scheme we must have $\alpha<1$ and Cuckoo hashing requires a stronger $\alpha<1 / 2$
Table of expected \# of probes over different strateiges:

	search (unsucessful)	search (successful)	insert
Linear probing	$\frac{1}{(1-\alpha)^{2}}$	$\frac{1}{1-\alpha}$ (avg. over keys)	$\frac{1}{(1-\alpha)^{2}}$
Double Hashing	$\frac{1}{1-\alpha}+o(1)$	$\frac{1}{1-\alpha}+o(1)$	$\frac{1}{1-\alpha}+o(1)$
Cuckoo Hashing	1 (worst-case)	1 (worst-case)	$\frac{\alpha}{(1-2 \alpha)^{2}}$

All operations have $O(1)$ expected run-time if the hash-function is chosen uniformly and α is kept small.

Choosing a Good Hash Function

The uniform hashing assumption is impossible to satisfy since there too many possible hash functions. Instead we need to compromise:

- Choose a hash-function that is easy to compute
- While aiming for $P(h(k)=i)=\frac{1}{M}$ w.r.t key-distribution

If all keys are used equally often then this is easy but in practice to get good performance we need:

- hash-function is unrelated to any possible patterns in the data, and
- depends on all parts of the key

The two basic methods for integer keys we saw were:

- Modular method:

$$
h(k)=k \bmod M
$$

where M should be chosen to be prime

- Multiplicative method:

$$
h(k)=\lfloor M(k A-\lfloor k A\rfloor)\rfloor
$$

for some constant floating-point number A with $0<A<1$

Carter-Wegman's Universal Hashing

Idea: use randomization to create a family of easy to compute hash functions

- Requires: all keys are in $\{0, \ldots, p-1\}$ for some (big) prime p
- Choose $M<p$ arbitrarily, power of 2 is ok
- Choose two random numbers $a, b \in\{0, \ldots, p-1\}$ where $a \neq 0$
- Then we have the hash function

$$
h(k)=((a k+b) \bmod p) \bmod M
$$

- Clearly $h(k)$ can be computed in $O(1)$ time (although p is large it is still a constant)
- don't care about bit complexity in this course
- This method of choosing h does not satisfy uniform hashing but we get part of its implication
- $P(h(k)=i)=1 / M$
- Hash values of two keys are not independent of each other

Multi-Dimensional Data

What if the keys are multi-dimensional, such as strings in Σ^{*} ?
The standard approach is the flatten string w to integers $f(w) \in \mathbb{N}$

$$
\begin{align*}
\text { APPLE } & \rightarrow(65,80,80,76,69) \tag{ASCII}\\
& \rightarrow 65 R^{4}+80 R^{3}+80 R^{2}+76 R^{1}+69 R^{0} \\
& \rightarrow(((65 R+80) R+80) R+76) R+69
\end{align*}
$$

(Radix $R=128$)

If we use modular hash function $h(w)=f(w) \bmod M$ we can use Horner's rule to apply mod early:

$$
h(\mathrm{APPLE})=((((((65 R+80) \bmod M) R+80) \bmod M) R+76) \bmod M) R+69) \bmod M
$$

Sometimes it is possible to compute the hash of multi-dimensional data in constant time

Hashing vs Balanced Search Trees

Balanced search tree advantages:

- $O(\log n)$ worst case operation cost
- Does not requrie any assumptions, special functions, or known properties of input distribution
- Predictable space usage (exactly n nodes)
- Never need to rebuild entire structure
- Supports ordered dictionary operations (rank, select, etc)

Hash table advantages:

- $O(1)$ operation cost (if hash-function is random and load factor is small)
- Can choose space-time tradeoff via load factor
- Cuckoo hashing achieves $O(1)$ worst-case for search and delete

Range Searches

So far our search (k) requests only looked for one specific item.
New operation RangeSearch looks for all items that fall within a given range

- Input: A range, i.e. an interval $I=\left(x, x^{\prime}\right)$ (may be open or closed at the ends)
- Output: report all KVPs in the dictionary whose key k satisfies $k \in I$
- e.g. RangeSearch $((18,45])$ should return $\{19,33,45\}$

5	10	11	17	19	33	45	51	55	59

Measuring the the run-time will work a little different:

- Let s be the output-size (nmber of items in the range)
- We need $\Omega(s)$ time to simply report the items
- We don't know what s is so we keep it as a separate parameter when analyzing run-time
$-O(s+n)$ doesn't really make sense because $0 \leq s \leq n$
$-O(s+\log n)$ does make sense because s can dominate the expression

Using existing dictionary realizations:

- Unsorted list/array/hash table: range search requires $\Omega(n)$ time since we need to check for every item explicitly whether it is in the range
- Sorted array: range search can be done in $O(\log n+s)$ time
- Using binary search, find i so that x_{1} is at (or would be at) $A[i]$
- Using binary search, find i^{\prime} so that x_{2} is at (or would be at) $A\left[i^{\prime}\right]$
- Report all items $A\left[i+1 . . i^{\prime}-1\right]$
- Report $A[i]$ and $A\left[i^{\prime}\right]$ if they are also in the range
- Binary search tree: range search can be done in $O(h+s)$ time (details later)

Multi-Dimensional Data

Range searches are of special interest for multi-dimensional data

- Each item has d aspects (coordinates): $\left(x_{0}, \ldots, x_{d-1}\right)$
- The values of the aspects x_{i} are numbers
- Each item corresponds to a point in d-dimensional space
- We will concentrate on $d=2$, i.e. points in Euclidean plane

Example: we want to find flights that leave between 9am and noon, and cost between $\$ 300-\$ 500$

d-dimensional range search: given a query rectangle A, find all points that lie within A :

- Assume that points are in general position: no two x-coordinates or y-coordinates are the same
- data structures can be generalized to allow any points
- Could store a 1-dimensional dictionary (where key is some combination of the aspects)
- Problem: range search on one aspect is not straightforward
- Could use one dictionary for each aspect
- Problem: inefficient and wastes space

A better idea is to design new data structures specifically for points.

Quadtrees

Assume we have n points $S=\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ on the plane.
We begin with a bounding box R that contains all the points

- This R can be found by computing max and min, x and y values in S
- Width and height of R should be a power of 2

Then to build the quadtree that stores S we create the following structure:

- Root r of the quadtree is associated with the entire region R
- If R contains 0 or 1 points, then root r is a leaf that stores the point and we are done
- If there are more than 1 point, then partition R into 4 equal subsquares (quadrants)
- $R_{\mathrm{NE}}, R_{\mathrm{NW}}, R_{\mathrm{SW}}, R_{\mathrm{SE}}$
- Distribute the points in S into the set where they belong: $R_{\mathrm{NE}}, R_{\mathrm{NW}}, R_{\mathrm{SW}}, R_{\mathrm{SE}}$
- Convention: points on the split lines belong to the right/top side (tie-breaker)
- Recursively build tree T_{i} for points S_{i} in region R_{i} and make them children of the root The KVPs are only stored in a leaves and each leaf can only contain 0 or 1 KVP.

Example: steps to build a Quadtree

		- ${ }_{4}$
$\stackrel{p_{3}}{\cdot}{ }^{p_{1}}{ }^{p,}$	- p_{8}	
\dot{p}_{0}	${ }^{p} 6$.p
p_{2}	${ }^{\prime}{ }_{7}$	

Quadtree Dictionary Operations

- search: same as BST and tries
- insert:
- Search for the point then place at the region
- Split the leaf if there are two points in a single region
- delete:
- Search for the point then remove it
- Recursively delete all ancestors that have only one point left

Example: Quadtree insert example

Quadtree Range Search

```
// r: The root of a quadtree, A: Query-rectangle
QTree::RangeSearch(r \leftarrow root, A)
    R}\leftarrow\mathrm{ region associated with node r
    if (R\subseteqA) then // inside node
        report all points below r; return
    if (R \cap A is empty) then // outside node
        return
        // The node is a boundary node, recurse
    if (r is a leaf) then
        p}\leftarrow\mathrm{ point stored at r
        if p is in A return p
        else return
    for each child v of r do
        QTree::RangeSearch(v, A)
```

Note: we assume that each node of the quadtree stores its associated squared, but, they can also be
recomputed during the search (space-time tradeoff)

Example:

Quadtree Analysis

Notice that if we have some points really close to each other then we can end up with a really bad height.
Example: create a quadtree from 3 points: p_{0} at $(0,0)$ then p_{1} and p_{2} close to each other

We introduce spread factor of points P

$$
\beta(S)=\frac{\text { sidelength of } R}{\text { minimum distance between points in } S}
$$

Can show that height h of the quadtree is $\Theta(\log \beta(S))$

- Complexity to build quadtree: $\theta(n h)$ worst-case
- Complexity of range search: $\theta(n h)$ worst-case (even if answer is \emptyset)

In practice these can be much faster

Quadtrees in Other Dimensions

A quadtree of 1 -dimensional points 1 or 0 acts like a pruned trie:

Can generalize quadtrees to higher dimensions (e.g. octrees) but will rarly use them beyond dimension 3 .

Quadtree Summary

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (bit-shift) if height/width of R is power of 2
- Can potentially waste space if points are not weel-distributed
- Variation: stop splitting earlier and allow up to S points in a leaf (for fixed S)
- Variation: use quadtree to store an image

kd-Trees

Suppose we have n points $S=\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$.
Idea: instead of always spliting into quadrants (like quadtrees), split the region such that (roughly) half the points are each subtree

- Each node keeps track of a splitting line for one dimension
- For the 2D case the line is either vertical or horizontal
- Convention: points on the split lines belong to right/top side
- Split, switching between making vertical and horizontal lines, until every point is in a separate region
- alternative: split along the dimension that has more even length ratio for the resulting regions

Constructing a kd-Tree

To build a kd-tree with with initial spliting x on points S :

- If $|S| \leq 1$ create a leaf and return
- Else use quick-select to select the median x-coordinate
$-X:=q u i c k-s e l e c t(S,\lfloor n / 2\rfloor)$ (selected by x-coordinate)
- Partition S by x-coordinate into $S_{x<X}$ and $S_{x \geq X}$
- This will lead to $\lfloor n / 2\rfloor$ points on one side and $\lceil n / 2\rceil$ points on the other
- Recall that points are in general position
- Create left subtree recursively (splitting by y) on points $S_{x<X}$
- Create right subtree recursively (splitting by y) on points $S_{x \geq X}$

Example:

The time it takes to construct a kd-tree:

- Find X and partition S in $\Theta(n)$ expected time using randomized-quick-select
- Both subtrees have $\approx n / 2$ points

$$
T^{\exp }(n)=2 T^{\exp }(n / 2)+O(n) \quad \text { (sloppy recurrence) }
$$

This resolves to $\Theta(n \log n)$ expected time

- This can be reduced $\Theta(n \log n)$ worst-case time by pre-sorting (no details)
- heap on x-coordinates and another heap on y-coordinates

Height: $h(1)=0, h(n) \leq h(\lceil n / 2\rceil)+1$

- Resolves to $O(\lceil\log n\rceil)$

kd-Tree Dictionary Operations

- search: same as in a BST (via the indicated coordinate)
- insert: search then insert as new leaf
- delete: search then remove leaf

After insert or delete, the split might no longer be at the exact median so height may not longer be guaranteeed to be $\lceil\log n\rceil$.
kd-trees overall do not handle insertion/deletion well so we maintain $O(\log n)$ height by occasionally rebuilding entire subtrees.

kd-Tree Range Search

Range search is exactly the same as for quadtrees, execpt that there are only two children

```
// r: The root of a kd-tree, A: Query-rectangle
kdTree::RangeSearch(r \leftarrow root, A)
    R}\leftarrow\mathrm{ region associated with node r
    if (R \subseteqA) then report all points below r; return
    if (R \cap A is empty) then return
    if (r is a leaf) then
        p}\leftarrow\mathrm{ point stored at r
        if p is in A return p
        else return
    for each child v of r do
        kdTree::RangeSearch(v, A)
```

- We again assume that each node stores its associated region
- To save space, we could instead pass the region as a paramter and compute region for each child using the splitting line

Example:

- Red: search stopped due to $R \cap A=\emptyset$ (no overlap)
- Green: search stopped due to $R \subseteq A$ (entirely contained in search area)

The complexity is $O(s+Q(n))$ where

- s is the output-size
- $Q(n)$ is the number of boundary nodes (blue)

Can show that $Q(n)$ satisifies the following recurrence relation (no details):

$$
Q(n) \leq 2 Q(n / 4)+O(1)
$$

This resolves to $Q \in O(\sqrt{n})$ therefore the complexity of range search is $O(s+\sqrt{n})$

kd-Tree in Higher Dimensions

kd-tree is short for k-dimensional tree

- At the root the point set is partitioned based on the first coordinate
- At the subtrees of the root the partition is based on the second coordinate
- At depth $k-1$ the partition is based on the last coordinate
- At depth k we start all over again, partitioning on the first coordinate

For a k-dim tree assuming that k is constant we have:

- Storage: $O(n)$
- Height: $O(\log n)$
- Construction time: $O(n \log n)$
- Range search time: $O\left(s+n^{1-1 / k}\right)$

Notice how as k increases the range search run-time approaches linear time.

Range Trees

While quadtrees and kd-trees are intuitive and simple they are kind of slow for range searches.
Range Trees are built from a tree of trees (multi-level data structure) that although are more wasteful in space, will perform range searches much faster.

For a 2-dimensional range tree we have:

- Primary structure: balanced BST T that stores P and uses x-coordinates as keys
- Every node v of T stores an associate structure $T(v)$:
- Let $P(v)$ be all the points in subtree of v in T (including v itself)
- $T(v)$ stores $P(v)$ in a balanced BST using the y-coordinates as the key
$-v$ is not necessarily the root of $T(v)$

- The subtree v in T stores the points in a balanced BST using the x-coordinates
- The tree $T(v)$ stores the same points in a balanced BST using the y-coordaintes

Note that we are assuming that points are in general position.

Example: partial range tree example (not all associate trees are shown)

Range tree space analysis:

- Primary tree uses $O(n)$ space
- Associate tree $T(v)$ uses $O(|P(v)|)$ space
- Notice that $w \in P(v)$ implies that v is an ancestor of w in T
- Every node w has $O(\log n)$ ancestors in T (we assume T to be balanced BST)
- Every node w belongs to $O(\log n)$ sets $P(v)$
- Then we have

$$
\sum_{v}|P(v)| \leq \sum_{w} \#\{\text { ancestors of } w\} \in O(n \log n)
$$

Thus a range-tree with n points uses $O(n \log n)$ space.

Range Tree Dictionary Operations

- search: search by x-coordinate in T
- insert: first insert point by x-coordinate into T, then
- walk back up to root and insert the point by y-coordinate in all associate trees $T(v)$ of nodes v
- delete: analogous to insertion

One problem is that we want the BSTs to be balanced

- however if we use AVL-trees this makes insert/delete slow
- rotation at v changes $P(v)$ and requires a rebuild of $T(v)$
- This is solved by completely rebuilding the the subtrees when they get highly unbalanced

BST Range Search

The main component to this is how to perform range search on a regular BST:

```
// r: root of a binary search tree, x1, x2: search keys
// Returns keys in subtree at r that are in range [x1, x2]
BST::RangeSearch-recursive(r \leftarrow root, x1, x2)
    if r = NIL then return
    if x1 \leq r.key \leq x2 then
        L \leftarrow BST::RangeSearch-recursive(r.left, x1, x2)
        R}\leftarrow\mathrm{ BST::RangeSearch-recursive(r.right, x1, x2)
        return L U r.{key} \cup R
    if r.key < x1 then
        return BST::RangeSearch-recursive(r.right, x1, x2)
    if r.key > x2 then
        return BST::RangeSearch-recursive(r.left, x1, x2)
```

The keys are reported in-order, i.e. sorted order (useful but not required)
Example: BST::RangeSearch-recursive $(T, 28,43)$

- Search for left boundary x_{1} : gives path P_{1}
- Search for right boundary x_{2} : gives path P_{2}
- This partiations T into three groups: outside, on, or between these paths
- Boundary nodes (blue): nodes in P_{1} or P_{2} (need to test if in range)
- Outside nodes (red): nodes that are left of P_{1} or right of P_{2} (will never be in range)
- Inside nodes (green): nodes that are right of P_{1} and left of P_{2} (all descendants are in range)

BST range search analysis

- Assume that the BST is balanced
- Searching for paths P_{1} and P_{2} take $O(\log n)$ each and produce $O(\log n)$ boundary nodes (blue)
- We spend $O(1)$ on each binary node
- We also spend $O(1)$ time per topmost inside node v (green)
- Since they are children of boundary nodes, this takes $O(\log n)$ time
- For a 1D range search we also report the descendants of v

$$
\sum_{v \text { topmost insde }} \#\{\text { descendants of } v\} \leq s
$$

since subtrees of topmost inside nodes are disjoint, so this takes $O(s)$ time overall Thus the runtime for 1D range search is $O(\log n+s)$ (same as range search on sorted array)

Range Tree Range Search

The perform a range search for $A=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ we use a two stage process:

- Perform a range search on x-coordinates for internal $\left[x_{1}, x_{2}\right]$ in primary tree T
- BST::RangeSearch $\left(T, x_{1}, x_{2}\right)$
- Note: for every boundary node (blue) test if corresponding point is actually in A
- For every topmost inside node (green) v:
- Let $P(v)$ be the points in the subtree of v in T
- We know that all x-coordinates of points in $P(v)$ are within $\left[x_{1}, x_{2}\right]$
- Find the subset of points in $P(v)$ where the y-coordinates are within the range as well
* this is done by performing a range search on $T(v)$
* BST::RangeSearch $\left(T(v), y_{1}, y_{2}\right)$

Example:

Range search run-time:

- $O(\log n)$ time to find boundary and topmost inside nodes in primary tree
- there are $O(\log n)$ such des
- $O\left(\log n+s_{v}\right)$ time for each topmost inside node v
- where s_{v} is the number of points in $T(v)$ that are reported
- Two topmost inside nodes have no common point in their trees
- every point is reported in at most one associate structure
$-\sum_{v \text { topmost inside }} s_{v} \leq s$
So the overall time for range search on a range-tree is proportional to

$$
\sum_{v \text { topmost inside }}\left(\log n+s_{v}\right)=\sum \log n+\sum s_{v} \in O\left(\log ^{2} n+s\right)
$$

There are methods to make this faster but no details from this course.

Range Trees in Higher Dimensions

Range trees can be generalized in k-dimensional space, so assuming that k is constant:

- Space: $O\left(n(\log n)^{k-1}\right)$
- Construction time: $O\left(n(\log n)^{k}\right)$
- Range search time: $O\left(s+(\log n)^{d}\right)$

Notice that kd-trees are actually better than range trees when going into higher dimensions.

Summary of Range Search Data Structures

- Quadtrees
- simple (also for dynamic set of points)
- works well only if points are evenly distributed
- wastes space for higher dimensions
- kd-trees
- linear space
- range search time: $O(\sqrt{n}+s)$
- insert/delete destory balance (no simple fix)
- range-trees
- range search time; $O\left(\log ^{2} n+s\right)$
- wastes some space
- insert/delete desotry balance (can fix with occasional rebuild)

Convention: points on split lines belong to right/top side

String Matching

The goal of string matching is to locate a string (pattern) in a large body of text:

- $T[0 . . n-1]$ the text (or haystack) being searched within
- $P[0 . . m-1]$ the pattern (or needle) being searched for
- All strings are all over an alphabet Σ
- We are finding the smallest i such that

$$
P[j]=T[i+j] \quad \text { for } 0 \leq j \leq n-1
$$

- this is the first occurrence of P in T
- if P does not occur in T, return FAIL

Example: P_{1} is found at index 1 of T while P_{2} is not found in T

$$
T=\text { "where is he?" } \quad P_{1}=\text { "he" } \quad P_{2}=\text { "who" }
$$

- Substring of T : a string that consists of $T[i . . j]$ for some $0 \leq i \leq j<n$
- Prefix of T : a string that consists of $T[0 . . i]$ for some $0 \leq i<n$
- Suffix of T : a string that consists of $T[i . . n-1]$ for some $0 \leq i<n$

In general pattern matching algorithms will consists of guesses and checks:

- A guess or shift is a position i such that P might start at $T[i]$
- Valid guesses (initially) are $0 \leq i \leq n-m$
- A check of a guess is a single position j with $0 \leq j<m$ where we compare $T[i+j]$ to $P[j]$
- Need to perform m checks to confirm a correct guess
- If the guess is incorrect then may require much fewer checks

Brute-Force Algorithm

Idea: check every possible guess (note that strcmp takes $\Theta(m)$ time)

```
// T: String of length n (text), P: String of length m (pattern)
Bruteforce::patternMatching(T[0..n-1], P[0..m-1])
    for i}\leftarrow0\mathrm{ to n - m do
        if strcmp(T[i..i+m-1], P) = 0
            return "found at guess i"
    return FAIL
```

```
strcmp(T[i..i+m-1], P[0..m-1])
```

strcmp(T[i..i+m-1], P[0..m-1])
for j}\leftarrow0\mathrm{ to m - 1 do
for j}\leftarrow0\mathrm{ to m - 1 do
if T[i + j] is before P[j] in \Sigma then return -1
if T[i + j] is before P[j] in \Sigma then return -1
if T[i + j] is after P[j] in \Sigma then return 1
if T[i + j] is after P[j] in \Sigma then return 1
return 0

```
    return 0
```

Example: $T=a b b b a b a b b a b, P=a b b a$

a	b	b	b	a						
a	b	b	a							
	a									
		a								
			a							
				a	b	b				
					a					
						a	b	b	a	

- A possible worst input is

$$
P=\mathrm{a}^{m-1} \mathrm{~b} \quad T=\mathrm{a}^{n}
$$

- Worst case performance $\Theta((n-m) \cdot m)$ which overall becomes $\Theta(m n)$

Improving Brute Force

We will follow two methods to improve this time:

- preprocessing on the pattern P
- Karp-Rabin
- Boyer-Moore
- Deterministic finite automata (DFA), KMP
- eliminate guesses based on completed matches and mismatches
- preprocessing on the text T
- Suffix-trees
- Suffix-arrays
- create a data structure to find matches easily

Karp-Rabin Algorithm

Idea: use hashing to eliminate guesses

- Compute hash of every guess and compare with hash of the pattern
- If the values are unequal then the guess cannot be an occurrence

$$
a=b \Longrightarrow h(a)=h(b) \quad \rightarrow \quad h(a) \neq h(b) \Longrightarrow a \neq b
$$

- if the hashes match then they might be the same

A crucial insight is that we can use the previous hash to compute the next hash in constant time:

- $O(1)$ time per hash, except the first one
- Precomputed: $10000 \bmod 97=9$ (based the value of the MSB)
- Current hash: $\underline{4} 1592 \bmod 97=76$
- Next hash:

$$
\begin{aligned}
1592 \underline{6} \bmod 76 & =(41592-4 \cdot 10000) \cdot 10+6 \\
& =((\underbrace{41592 \bmod 97}_{\text {current hash }(76)}-4 \cdot \underbrace{10000 \bmod 97}_{\text {precomputed }(9)}) \cdot 10+6) \bmod 97 \\
& =((76-4 \cdot 9) \cdot 10+6) \bmod 97 \\
& =18
\end{aligned}
$$

```
Karp-Rabin-RollingHash: : patternMatching(T, P)
    M}\leftarrow\mathrm{ suitable prime number
    hP}\leftarrowh(P[0..m-1)]
    hT}\leftarrowh(T[0..m-1)]
    s}\leftarrow10^{m-1} mod 
    for i}\leftarrow0 to n - m
        if hT = hP
            if strcmp(T[i..i+m-1], P) = 0
                    return "found at guess i"
        if i < n - m // compute hash-value for next guess
            hT \leftarrow((hT - T[i] . s) . 10 + T[i+m]) mod M
    return "FAIL"
```

- Choose table size M to be random prime in $\left\{2, \ldots, m n^{2}\right\}$
- Expected time $O(m+n)$, worst-case time $O(m n)$ (very unlikely)
- Improvement: reset M if no match of $h_{T}=h_{P}$

Boyer-Moore

Boyer-Moore is the fastest pattern matching algorithm for English text and requires 3 components:

- Reverse-order searching: compare P with a guess starting from the end and moving backwards
- When a mismatch occurs then choose the better of the following two options:
- Bad character jumps: eliminate guesses based on mismatched characters of T
- Good suffix jumps: eliminate guesses based on matched suffix of P

Reverse Order Searching

For each guess we start checking from the end of the pattern and move towards the beginning

- If the letter seen in text does not appear in the pattern we can shift past it
- This works well with the bad character heuristic

Example: $P=$ aldo, $T=$ whereiswaldo

w	h	e	r	e	i	S	w	a	1	d	0
			0								
							0				
								a	I	d	0

- Since r does not occur in P we shift past it
- Since w does not occur in P we shift past it

Bad Character Heuristic

Example:

1. Mismatched character in the text is a
2. Shift the guess until a in P aligns with a in T
3. Shift the guess until last p in P aligns with p in T
4. Shift completely past o since o is not in P
5. Finding r in this place does not help so just shift by one unit

- Could get a better shift if use a good suffix jump

To implement this we build a last-occurence array L mapping Σ to integers

- $L[c]$ is the largest index i such that $P[i]=c$
- If c is not in P then set $L[c]=-1$ (will be useful later)
- e.g.

Pattern:

Last-Occurrence Array:

0	1	2	3	4
p	a	p	e	r

char	p	a	e	r	all others
$L[\cdot]$	2	1	3	4	-1

This can be built in $O(m+|\Sigma|)$ time with a simple for loop:

```
BoyerMoore::lastOccurrenceArray(P[0..m-1])
    initialize array L indexed by }\Sigma\mathrm{ with all -1
    for j}\leftarrow0\mathrm{ to m-1 do L[P[j]]}\leftarrow\textrm{j
    return L
```

To update the location of the guess we have the formula:

$$
i^{\mathrm{new}}=i^{\text {old }}+(m-1)-\min \left\{L[c], j^{\text {old }}-1\right\}
$$

This formula captures 3 cases can occur in the case of a mismatch:

1. $L[c]<j$ so c is at the left of $P[j]$

- In this case we only shift enough to line up c in pattern with c in text
- $i^{\text {new }}=i^{\text {old }}+\Delta_{2}+\Delta_{1}=i^{\text {old }}+(m-1)-L[c]$
$-\Delta_{1}=j^{\text {old }}-L[c]$ (amount that we should shift)
$-\Delta_{2}=(m-1)-j^{\text {old }}$ (how much we had compared)

2. c does not occur in P so we get $L[c]=-1$

- In this case we want to shift the pattern past $i^{\text {old }}$
- $i^{\text {new }}=i^{\text {old }}+m=i^{\text {old }}+(m-1)-L[c]$

3. $L[c]>j$ so c is at the right of $P[j]$

- Bad character heuristic cannot make a shift more than 1 in this case
- $i^{\text {new }}=i^{\text {old }}+\Delta_{2}+\Delta_{1}=i^{\text {old }}+1+(m-1)-j^{\text {old }}=i^{\text {old }}+(m-1)-\left(j^{\text {old }}-1\right)$
- Notice that $\min \left\{L[c], j^{\text {old }}-1\right\}=j^{\text {old }}-1$ since $L[c]>j\left(\right.$ since j means $\left.j^{\text {old }}\right)$
- We also won't have $L[c]=j$ because that would imply a match

Good Suffix Heuristic

$S[j]$ contains that amount to shift when $P[j+1 . . m-1]$ are matched.

S can be found in $\Theta(m)$ time but the exact formula is complicated (no details)

Boyer-Moore Summary

```
Boyer-Moore::patternMatching(T, P)
    L \leftarrow lastOccurrenceArray(P)
    S}\leftarrow\mathrm{ good suffix array computed from P
    i}\leftarrowm-1, j\leftarrowm - 1
    while i < n and j \geq0 do
        // current guess begins at index i - j
        if T[i] = P[j]
            i}\leftarrowi\mp@code{- 1
            j}\leftarrowj-
        else
            i}\leftarrow i + m-1 - min{L[T[i]], j-1
            // if good suffix heuristic is used, then line above should be:
            // i}\leftarrow i + m-1 - min{L[T[i]], S[j]
            j}\leftarrowm-
    if j = -1 return "found at T[i+1..i+m]"
    else return FAIL
```

- Boyer-Moore performs well even without good suffix heuristic
- On typical english text Boyer-Moore only looks at $\approx 25 \%$ of T
- Worst case run-time is $O(m n)$ but much faster in practice
- There are methods to ensure a $O(n)$ run-time (no details)

Knuth-Morris-Pratt (KMP) Algorithm

String Matching with Finite Automata

Example: NFA for matching the pattern $P=$ ababaca

Each state q expresses that we have seem $P[0 . . q-1]$ in the text

- NFA will accept T if and only if T contains P
- NFAs evaluation is quite slow so we convert to equivalent DFA $(\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\})$
- It is always possible to convert a NFA to a DFA

We notice that finding this small DFA from a NFA can be difficult.

KMP Algorithm

- Introduce a new type of transition: \times (failure)
- At most one per state, to be used only if no other transition fits
- Does not consume a character
- Computations of this automaton is deterministic (however formally this is not a valid DFA)
- The failure-function can be stored in an array $F[0 . . m-1]$
- Failure arc from state j leads to $F[j-1]$

```
KMP::patternMatching(T, P)
    F}\leftarrow\mathrm{ failureArray(P)
    i}\leftarrow0// current character of T to pars
    j}\leftarrow0 // current state: we have seen P[0..j-1]
    while i < n do
        if P[j] = T[i]
            if j = m - 1
            return "found at guess i - m + 1"
```

```
        else
        i}\leftarrowi+
        j}\leftarrowj+
    else // i.e. P[j] != T[i]
        if j > 0
        j}\leftarrowF[j - 1
    else
        i}\leftarrowi+
return FAIL
```

Example: $T=$ abababbcababaca, $P=$ ababaca

state: | 1 | 2 | 3 | 4 | 5 | 3,4 | 2,0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(after reading this character)

KMP Failure Array

$F[j]$ is the length of the longest prefix of P that is a suffix of $P[1 . . j]$
Example: Consider $P=$ ababaca

j	$P[1 . . j]$	Prefixes of P	longest	$F[j]$
0	Λ	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	Λ	0
1	b	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	Λ	0
2	ba	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	a	1
3	bab	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	ab	2
4	baba	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	aba	3
5	babac	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	Λ	0
6	babaca	$\Lambda, \mathrm{a}, \mathrm{ab}, \mathrm{aba}, \mathrm{abab}, \mathrm{ababa}, \ldots$	a	1

```
// P: String of length m (pattern)
KMP::failureArray(P)
    F[0]}\leftarrow
    j}\leftarrow1// index within parsed tex
    \ell<0 // reached state
    while j < m do
        if P[j] = P[\ell]
            \ell}\leftarrow\ell+
```

```
    F[j]}\leftarrow
    j}\leftarrowj+
else if \ell > 0
    \ell
else
    F[j]}\leftarrow
    j}\leftarrowj+
```

$F[j]$ is defined via pattern matching of P in $P[1 . . j]$ (built parts of F are used to expand it)

KMP Runtime

- failureArray
- Consider how $2 j-\ell$ changes in each iteration of the while loop:
* j and ℓ both increase by 1 ($2 j-\ell$ increases) OR
* ℓ decreases ($2 j-\ell$ increases) OR
* j increases ($2 j-\ell$ increases)
- Initially $2 j-\ell \geq 0$, at the end $2 j-\ell \leq 2 m$
- So no more than $2 m$ iterations of the while loop gives runtime of $\Theta(m)$
- KMP main function
- failureArray cna be computed in $\Theta(m)$ time
- Same analysis gives at most $2 n$ iterations of the while loop since $2 i-j \leq 2 n$
- The total runtime of KMP is $\Theta(n+m)$

Suffix Trees

If we were looking to search for many patterns P within the same fixed text T it would make more sense to preprocess the text T rather than the pattern P.

Observation: P is a substring of T iff P is some prefix of some suffix of T
A suffix tree is a compressed trie of all suffixes of T

Example: $T=$ bananaban has suffixes \{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, $\Lambda\}$

$$
T=
$$

Suffix tree: compressed trie of suffixes

- Building:
- Text T has n characters and $n+1$ suffixes
- Can build suffix tree by inserting each suffix of T into compressed trie: $\Theta\left(n^{2}|\Sigma|\right)$
- There is a way to build a suffix tree in $\Theta(n|\Sigma|)$ time (complicated and beyond this course)
- Pattern Matching:
- Essentially search for P in the compressed trie (runtime of $O(|\Sigma| m)$)
- Some modification is needed as P may be some prefix of a stored word
* P is substring of T iff P is some prefix of some suffix of T

Although this is theoretically good the construction is slow, complicated, and lots of space-overhead.

Suffix Array

Relatively recent development (popularized in the 1990s)
TODO

String Matching Summary

TODO

