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Number Represenation and Boolean Algebra

Radix Representation

A n-digit number in base r is written and has the value of

n—1

dn,1 dn,Q s dl dg — Z dﬂ’i

=1

We use base-10 (decimal)

Computers use base-2 (binary)

— ethernet light /no light, cpu/keyboard high /low voltage, hdd magnet north/south

Convert from larger to smaller base: Divide by target base until you reach 0 using the

remainder at each step as the digit (the remainder of the first division is the least significant)

Convert from smaller to larger base: Multiply each digit with the base to the power of its

position

Decimal and Binary Conversion

Example: 19;y to binary (Decimal to Binary)

19/2=8 R1
9/2=4 R1
4/2=2 RO
2/2=1 RO
1/2=0 R1

= 10011,

Example: 100115 to decimal (Binary to Decimal)

1x2°=1
1x2t=2
0x22=0
0x22=0
1x2*=16

1+2+16 =19



Decimal and Hexadecimal Conversion

Example: 3005, to hexadecimal (Decimal to Hexadecimal)

Dec

0-9

10 | 11

12 | 13

14 | 15

Hex

0-9

A | B

C

D

300/16 =18 R 12
18/16=1 R2

1/16=0 R1
= 12C;4 or 0x12C

Example: 1ED;g to decimal (Hexadecimal to Decimal)

Dx16°=13x 1
E x 16' = 14 x 16

1x16% =

=13
=224

1 x 256 = 256
13 + 224 + 256 = 49349

Binary and Hexadecimal Conversion

Bin

0000

0001

0010

0011

0100

0101 | 0110

0111

Hex

0

1

2 3

Bin

1000

1001

1010

1011

1100 | 1101 | 1110

1111

Hex

8

Example: Binary to Hexadecimal

101110110111010100010004

Example: Hexadecimal to Binary

1011

11 11 7 3
= 0xBB7510
0x3BDFT1

3 B D F

0011 1011 1101 1111

1011 0111 0101 0001 0000

1 0
7 1
0111 0001

= 11101111011111011100014




Boolean Algebra

Boolean Gates

Boolean OR Boolean AND Boolean NOT
X Y[XVY X Y|XAY X|=-X
0 0 0 0 0 0 0 1
0 1 1 0 1 0 L0
1 0 1 1 0 0
1 1 1 1 1 1
Boolean NOR Boolean XOR Boolean XNOR Boolean NAND
- (XVY) XA=Y)VEXAY) XAY)V(EXASY) - (XAY)
X Y |X]Y X Y| XY X Y| XOY X Y|[X|Y
0 0 1 0 0 0 0 0 1 0 0 1
0 1 0 0 1 1 0 1 0 0 1 1
1 0 0 1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 1 1 1 0
Precedence

Order from highest to lowest

NOT > AND = NAND > XOR = XNOR > OR = NOR

Equal precedence are evaluated left-to-right (parenthesis override precedence)

Drawing Boolean Gates

o | )—
or _) >—

wo [ Jo—  xor H—

NOT —{>0—



Boolean Algebra Rules

Identities Annihilators Complements Involution
AVvOo=A Avi=1 Av-A=1 -— A=A
ANT=A ANO=0 AN-A=0

AVA=A

ANA=A

Commutative Law Associative Law
AVB=BVA Av(BvC)=(AvB)VvC
AANB=BAA AANBAC)=(AAB)AC
Distributive Law De Morgan’s Law
ANBVC)=AABVAAC - (AVB)==-AA-B
AvBAC)=AVB)A(AVC(C) - (AAB)=-AV-B

(Recall precedence: A is before V)

Binary Arithmetic and Two’s Complement

Binary and decimal addition and multiplication both work the same way

Add 10115 and 11101, Multiply 1001, and 110,
1 011 100
+ 1 1 0 1 1 X 11
1 01000 0 00
0 0 1
+ 1 0 01
1 01 10

Note that in both examples the size of the result is larger than any of the input

e However if used a fixed size representation then there could be overflow
for a n-bit binary number: Min = 0 Max = 2" — 1

e If we want to represent negative values we have a couple of options

— Signed Magnitude (Bad)
« sign MSB (most significant bit) with one if neg and zero if pos

% issue: addition with pos and neg are not trivial and —0 is possible



— One’s Complement (Bad)
x Negative numbers are inverted positive numbers
% issue: addition only sort of works and —0 is possible
— Two’s Complement (Good)
* For negative number invert and add 1
x To convert back invert and add 1 (then turn to decimal and add negative sign)
* range: —2" 1 to 2"t —1

* no —0 and both addition and multiplication work

—3T7y0 to 8-bit two’s complement 100011115 from 8-bit two’s complement to decimal
e find +37 e if MSB is 1 then invert then add 1
001001015 01 1 10O0O0O0
+ 1
e invert then add 1 01 110001
11011010 e since MSD was 1 it was negative so
+ 1
1 1 011011 —11349

Floating Point
Binary Fractions

3.6251¢ to unsigned binary

0.625 x 2=1+0.25

3/2=1 R1
025x2=0+05
1/2=0 R1
05%x2=1+0
310 = 115

0.62510 = 0.1015

3.625,0 = 11.101,



101.00115 to decimal

1x27%=0.0625

1x27%=0.125

0x22=0

0x2'=0
1x2°=1
0x2'=0
1x22=4

101.00115 = 0.0625 + 0.125 + 1 + 5 = 5.1865;

Floating Point Representation

(-1)° x 1L.F x 28 B

S - sign bit

F - binary fraction bits
e E - exponent bits

e B - bias

IEEE-754 Single Precision (32-Bit)

ign

|

exponent fraction

31 - sign (1 bit)

23-30 - exponent (8 bits)

e (0-22 - fraction (23 bits)

Bias of 127

Simplified 8-Bit Model

sign exponent fraction



e 7 - sign (1 bit)
e 4-6 - exponent (3 bit)
e 0-3 - fraction (4 bits)

e Bias of 3

Subnormal Case

When our number is really small we switch from 1.F to 0.F
Normal (—1)% x 1.F x 28~ B Subnormal (—1)% x 0.F x 2! =B

To indicate the number is subnormal we use E = 0

Note: When number is subnormal we use the exponent 1— B to not leave a gap between subnormal

numbers and numbers that use E =1

IEEE-754 Special Cases

Exponent Fraction Result
000- - - 000- - - +0

000- - - NON-Zero subnormal
111--- 000- - - +o00
111--- Non-zero NaN
anything else anything normal

Floating Point Arithmetic

e Addition: align radix points and use normal addition

e Multiplication: add exponents and multiply significands (1.F if normal, 0.F" if subnormal)

Example: Add 00110101 and 01010011 using 8-bit model
S=0 E=011 F=0101 — (-1)°x1.0101x2*7?

S=0 E=101 F=0011 — (-1)°x1.0011x2°7?

11



1.100001 x 2> —  (=1)° x 1.100001 x 2°~3

After truncating extra fraction bits
S=0 E=101 F=1000 — 01011000
Example: Multiply 00111010 and 01101100 using 8-bit model

(—1)° x 1.1010 x 2°73  (—1)° x 1.1100 x 2673

1. 1010 x 20
1. 1100 x 23
1 1010
11010
+ 11010
10110110 %203

1.011011000 x 2*  —  (=1)? x 1.011011000 x 2"* — S=0 E =111 F =0110

We notice that our E is at infinity so we remove F' and say that the result is positive infinity

01110000

Decimal and Floating Point Conversion

Example: convert 10111100 to decimal using the 8-bit model

S=1 E=011 F=1100 B=3

1x27' =05
1x27% =025
0x 273 =
0x27* =

1.1100 — 1.75

(1) x L.LFx2FP  — (=1 x1.1100x 23 — —1x1.75x1 — —175

12



Example: convert —8.75;y into our 8-bit model

8/2=4R0
4/2=2R0 0.75x2=140.5
2/2=1R0 05x2=1+0
1/2=0R1

0.7510 = 0.11,
810 = 1000,

—-1000.11 — S=1, E-B=3, 1.00011

Since B = 3 we know that F = 6,9 = 110,

We are also only able to take 4 digits of the binary fraction so we just truncate the last bit
S=1 E=110 F=0001 — —9.75;0~ 11100001
Example: convert —0.0001015 into our 8-bit model (B = 3)
—0.000101  — 1.01 x27* —4<1-B —  subnormal
Since the value is subnormal we instead use the exponent 1 — B = —2 and set £ =0
—0.000101  — 0.0101 x 272

(-1)'x 00101 x2""% - S=1 E=000 F=0101 - 10000101

Blocks of Bits and Endianness
e Byte (8 bits)
— two’s complement range: —128---127
— unsigned binary range: 0---255

e Word (32 or 64 bits)

— Little-endian: least-significant byte first (Intel uses this)
% can start math right away (don’t have to go to end)
— Big-endian: most-significant byte first

* the "natural" way of writing a number (leftmost digit is biggest)

13



e Byte Order

— Different computers may use different endianness
— similar challenge for bits but irrelevant since bits are not addressable

— (5230 will use big-endian
e Example: converting big-endian 32-bit word 0x01FAB352 to little-endian

— Break up into 32/8 = 4 bytes then reverse the order
0x01FAB352 — 0x01 OxFA O0xB3 0x52 —  0x52 0xB3 OxFA 0x01

— if we want to send this to another computer then convert to binary

01010010 10110011 11111010 00000001

e For larger than 32 or 64 bit numbers

— programming libraries offer big integer types but more costly

(more complex data structures)

— do operations in software rather than hardware

Characters

ASCII

American Standard Code for Information Interchange (ASCII) assigns each character to a number
(each character can be stored in 7-bits (7F = 11111115 = 127;,) within a byte)

o1, 2|3|4|5|6,7|8|9 A|B|C|D|E|F
00 |NUL|SOH|STX |ETX|EOT|ENQ|ACK|BEL| BS | HT | LF | VT | FF | CR | SO | SI
10 |DLE|DC1|DC2|DC3|DC4 |NAK|SYN|ETB|CAN| EM |SUB|ESC| FS | GS | RS | US
20 ! CUH#| S| % & Cr)y [ =1+, - /
30|12 3,4 |,5|6/|7]8]|°9 <= ?
40/ @/ A B|C|D|/E|/F|G|H|I |J|K|L|M|N|O
50 PIQ R|S|IT|U|V I WIX|Y | Z|T[|\V]1]|"™]|_
60 a|/b|c|d|e]| f|g]|h i i k Il |m|n| o
M|plg|r|s|t|ju|v|iw|lx|y]|z]|{ | } | ~ |DEL

Example: 0x0077696E converts to [NUL]|win

14



Unicode

Unicode provides over 100,000 code points or characters, symbols, etc
e code point range: U4-0000 --- U4+10FFFF or 2! 4 22° ~ 1 million possible code points
e UTF: Unicode Transformation Format
e UTF-32: direct 4-byte encoding of code points
e UTF-16: 2-byte encoding for most code points (sometimes special prefix indicating 4-byte)
e UTF-8: 1 to 4 bytes with first byte compatible with ASCII

For UTF-8 the number of following bytes to take depends on starting bits of the first byte

1st Byte 2nd Byte 3rd Byte 4th Byte Number of Free Bits Maximum Expressible Unicode Value
0300000 7 007F hex (127)

170XXXX TOXXHHXX (5+6)=11 07FF hex (2047)

T110Xx%x TOXKHRHX TORHHKHN (4+6+6)=16 FFFF hex (65535)

11110xxx 1000y 1000 TR (3+6+6+6)=21 10FFFF hex (1,114,111)

The free bits are gathered up into one long binary number before being converted to hex

The MIPS Assembly Language

Machine vs Assembly Code

Machine Code
e Binary code (0s and 1s) that is directly executed by the processor
e Program is a series of instructions

— opcode (operation code) + operands (arguments)

— opcode say what action and operands say what to perform action to
Assembly Code
e Human-readable "programming language" (much simpler than Racket/Python/etc)
e Almost directly mapping to machine code

e Assembler turns it into machine code (process is "assembling" rather than "compiling")

15



MIPS Assembly Language Introduction

MIPS: Microprocessor without Interlocked Pipeline Stages

e There exists multiple revisions, systems, and compiler (not just one standard MIPS)

e We use simplified version in CS230

Each instruction is 32 bits = 4 bytes = 1 word

Arithmetic instructions operate on registers

— 32 registers numbered $0 to $31

— register $0 always equals 0

Instructions have up to 3 operands

— 1st is destination, 2nd and 3rd are sources

— source and destination can be the same

MIPS Emulation in CS230

To assemble the program we do

/u/cs230/pub/binasm < in.asm > out.mips
There are several emulators in /u/cs230/pub/ (also called simulators or frontends)

® noargs <mips-file>

run code without user input

® twoints <mips-file>

enter two integers to be stored in $1 and $2

® array <mips-file> and dumparray <mips-file>

enter an array of integer numbers to be stored in $1 and length in $2

Arithmatic Operations

Immediate Addition

addi $t, $s, 1
e set $t to sum of $s and value i
e value i can be in negative, decimal, hex (Ex: —4 or oxAA)
e often used to initialize registers: addi, $t, $0, i

Example: addi $1, $2, 14 ($1 becomes value in $2 + 14)

16



Addition and Subtraction

add $d4d, $s, $t

make $d equal to the sum of $s and $t

sub $d, $s, $t

make $d equal to $s minus $t

Multiplication and Division

special registers hi and 1o (accessed in different way than general purpose registers $0 .. $31)

mult $s, $t

e multiply values in registers $s and $t and place result in hi:1lo

— lo: contains the result of the multiplication

— ni: contains the overflow (for CS230 we can ignore)

div $s, $t

e divide values in registers $s with $t and place result in hi:lo

— lo: contains integer quotient

— hi: contains the remainder

mfhi $d

copy contents of hi to $d (Move From HI)

mflo $d

copy contents of 1o to $d (Move From LO)

Conditional Execution

Program Counter (PC)
e MIPS word size is 32-bits (each instruction is converted to 4 bytes of machine code)
e The Program Counter (CP) is the address of the current instruction’s byte

— always incremented by 4 bytes each instruction

— beq and bne does PC = PC + (i * 4) when condition is met

17



Conditional Branch

beq $s, $t, i

compare $s and $t (Branch if Equal) and if equal, skip i instructions (i can be negative)

bne $s, $t, i

compare $s and $t (Branch if Not Equal) and if not equal, skip 7 instructions (i can be negative)

Rather than setting a number for i we can use a label instead

addi $1, $0, 10
loop:

addi $1, $1, -1

bne $1, $0, loop

jr $31

In this example we use loop instead of —2 (the assembler will turn it into —2 for us)

Comparison

slt $d, $s, $t

e compare $s and $t (Set Less Than)

e when $s < $t set $d=1 otherwise set $d=0

Memory and Input/Output
Memory Model

e Byte addressable: 232 = 4294967296 addresses with each address storing 1 byte

e Word aligned (word referenced): access word by word (multiples of 4 bytes)

Constants
e Loading a constant can done with addi but limited to size of 16 bits
e For larger values use 1is (Load Immediate and Skip)

— loads next word (32 bits) into register and skip

— Example: load value 0xA3257CE2 into $4

lis $4
.word OxA3257CE2

18



Memory Access

lw $t, i($s)

e LLoad Word from address $s+i into $t

e $s+i must be word-aligned (i is a multiple of 4)

sw $t, i($s)

e Store Word from $t into the address s+i

e $s+i must be word-aligned (i is a multiple of 4)

Input/Output
We have two special addresses for I/O
e Input Memory Address: 0xFFFF0004

— each 1w reads a new char ("Magic" address)
— only sent to program once you press "Enter"

— only works for keyboard input (< input redirection may not work)
e Output Memory Address: 0xFFFFO00C

— bytes written to this address by sw will appear on screen

— ASCII encoding, only the least significant 7 bits

Arrays

Arrays store a fixed length sequence of values called elements or items
e two components

— address of the first element

— number of elements (size of array)
e We use a memory range as the data area (cannot iterate registers, but can iterate addresses)
e direct access and iteration (as location of elements is just a calculation)

e "Raw" array with no built-in boundary checking

19



Selection Sort

A simple but slow sorting algorithm that sweeps through array finding the smallest element and
moving to the end of the sorted part.

An implementation in Python:

def SelectionSort (A, length):
for i in range(0, length-1):
minpos = i
minimum = A[i]
for j in range(i+1l, length):

if A[j] < minimum:

minpos = j
minimum = A[j]
temp = A[i]
A[i] = A[minpos]
Alminpos] = temp

An implementation in MIPS:

; $1 - array start

; $2 - array length

; $8 - array end

; 1 as $9 and j as $12

; minpos in $10 and minimum in $11
; $12 and $13 for temp

addi $8, $0, 4 ; set up array end

mult $2, $8

mflo $8

add $8, $8, $1

addi $9, $1, O ; initialize $9
oloop: addi $10, $9, O ; set minpos $10

1w $11, 0($10) ; set minimum $11

addi $12, $9, O ; initialize $12
iloop: lw $13, 0($12) ; set up compare value

slt $14, $13, $11
beq $14, $0, notmin

addi $11, $13, O ; set new minimum

addi $10, $12, O ; set new minpos
notmin: addi $12, $12, 4

bne $12, $8, iloop ; loop over $12

1w $14, 0($9) ; load front value

sw $14, 0($10) ; store at minpos

sw $11, 0($9) ; store min in front

addi $9, $9, 4

bne $9, $8, oloop ; loop over $9

20



Subroutines
Calling
jal x

e Jump And Link

e copys the current pC + 4 into $31 and sets PC = x (where x is a label)

Indirect Calling
jalr $q
e Jump And Link Register
e copy current PC + 4 into $31 and set PC to contents of $q
— load the address of the label into $q with 1is and .word x before calling
— value in $q is called a function pointer and allows functions to be passed as parameters
Returning
jr $s
e Jump Register
e set PC to $s (usually do jr $31)
— $31 holds the return adddress
— $31 starts with the outer return address to exit the entire program
Calling and Returning

; example function

addTwoNumbers :
add $2, $4, $5
jr $31

; call function

jal addTwoNumbers

; call function indirectly
lis $1

.word addTwoNumbers

jalr $1

21



Example: Print String

e Print NUL-terminated string

e Use register conventions ($4...$7 for arguments $8...$15 for local variables)

; pr_str: prints out a null-terminated string
; input: $4
; locals: $8, $9, $10

pr_str: lis $8 ; set $8 for output
.word Oxffff000c
addi $9, $4, O ; copy value into $9
loop: lw $10, 0($9) ; load character
beq $10, $0, end ; NUL? -> end
sw $10, 0($8) ; output character
addi $9, $9, 4 ; increment $9
beq $0, $0, loop ; loop
end: addi $10, $0, OxA ; print LF
sw $10, 0($8)
jr $31 ; return
Stack

e last-in first-out queue
e stack grows downward in memory (Ex: addi $30, $30, -4)

e convention is to use $29 for the bottom of the stack however CS230 will use $30

Save to stack - push
e decrement stack pointer to make room

e copy value to stack point memory location

addi $30, $30, -4
sw $x, 0($30)

Restore from stack - pop
e copy value from stack pointer memory location

e increment stack pointer to free up space

1w $x, 0($30)
addi $30, $30, 4

22



Multiple Push/Pop

e Save three registers onto the stack

addi $30, $30, -12
sw $3, 0($30)
sw $4, 4($30)
sw $5, 8($30)

e Restore the second one and discard the others

1w $7, 4($30)
addi $30, $30, 12

Remember to always release all stack memory! (restore original value of $30)

Argument Passing and Register Conventions

We use registers and the stack to to pass arguments onto subroutines

(first 4 arguments in registers and rest in stack)

Within MIPS the conventions for registers is

$1 assembler temporary
$2, $3 function results
$4 .. $7 function arguments
$8 .. $15, $24, $25 temporary

$16 .. $23 saved temporary
$26 .. $27 OS kernel

e temporary: callee can change in any way (caller saves)
e saved temporary: callee must restore if they want to modify (callee saves)

e Always clean up the stack before jr $31

Hardware Support

There is often support from hardware or assembler
e reserving the stack area and save registers (also hardware stacks)
o register windows (MIPS does not have)

— multiple instances (windows) of callee-saved registers

— fast but limited to fixed small number of windows
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Example: Print Integer
e Extract digits
— check for negative number

— use modulo 10 and remainder to get digits

— convert digits to ASCII

e Use stack to reorder digits

; Pr_int: prints out an integer value
; input: $4
; locals: $8, $9, $10, $11

pr_int: lis $8 ; set up $8 for output
.word Oxffff000c
addi $9, $4, 0 ; set up value $9
addi $11, $0, O ; set up counter $11
slt $10, $9, $0 ; check for negative
beq $10, $0, comp
addi $10, $0, 0x2D ; print minus sign
sw $10, 0($8)
sub $9, $0, $9 ; make $9 positive
comp: addi $11, $11, 1 ; increment counter
addi $10, $0, 10
div $9, $10 ; divide by 10
mfhi $10
addi $30, $30, -4 ; remainder on stack
sw $10, 0($30)
mflo $9 ; result to $9
bne $9, $0, comp ; restart loop
output: 1lw $10, 0($30) ; start from stack

addi $30, $30, 4
addi $10, $10, 0x30 ; convert to ASCII

sw $10, 0($8) ; output

addi $11, $11, -1 ; decrement counter
bne $11, $0, output ; restart loop

addi $10, $0, OxA ; print LF

sw $10, 0($8)

jr $31 ; return
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Recursion

e Mathematical programming technique (divide large problem into small ones)

e Needs stack memory area per subroutine

Example: Factorial

; $4 for input
; $2 for ouput

; save only $4 during recursion

addi $2, $0, 1
fac: slt $3, $0, $4
beq $3, $0, end
addi $30, $30, -8
sw $31, 4($30)
sw $4, 0($30)
addi $4, $4, -1
jal fac ; recursion
r: 1w $31, 4($30)
lw $4, 0($30)
addi $30, $30, 8
mult $2, $4
mflo $2
end: jr $31

Tteration is still easier

addi $2, $0, 1

slt $3, $0, $4

beq $3, $0, end

addi $3, $4, O
loop: mult $2, $3

mflo $2

addi $3, $3, -1

bne $3, $0, loop
end: jr $31

’

>

basic result
$4 > 0 7
else: finish
save $31 & $4

decrement $4

restore $31 & $4

multiply
store result

return

; basic result

; $1 > 0 7

; finish

; use $3 as temp
; product

; store result

; decrement $3

; loop, if not O

; return
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Example: Fibonacci

fO)=0  f1)=1

This can be written in Python as

def fib(n):
if n < 2: # base case
return n
else:

return fib(n - 1) + fib(n - 2)

This can be written in MIPS as
; input: $4
; output: $2
; locals: $8

fib: addi $2, $4, O ; default output = input
addi $8, $0, 1
slt $8, $8, $4 ; 1 < input
beq $8, $0, end ; else: finish
addi $30, $30, -8 ; save return & input

sw $31, 4($30)
sw $4, 0($30)

addi $4, $4, -1 ; compute f(n-1)

jal fib

addi $30, $30, -4
sw $2, 0($30)
addi $4, $4, -1
jal fib

lw $8, 0($30)
addi $30, $30, 4
add $2, $2, $8

1w $31, 4($30)
1w $4, 0($30)

addi $30, $30, 8

end: jr $31

result in $2

store result on stack
compute f(n-2)

result in $2

restore f(n-1) as $8

add f(n-1)+f(n-2)

restore return & input

return
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CPU Instruction Proccessing

Definitions

e Multiplexor: forwards X or Y signal depending on S (one of the simplest control elements)

e Clock Cycle: the heart beat of the computer (measured in time per cycle)

E |

e Tick: the rising edge of the clock cycle

voltage
tick
tick

time

— Note: electrial signals are not infinitly fast so there will be gate delays

+—Clock period—.

Clock (cycles) | | |_
Data transfer >
and computation
Update state O O O

CPU Clocking: a cycle of working, updating, working, updating, ...

— we split instructions up into pipeline stages with one stage per clock cycle

Clock Frequency: inverse of clock period and measured in cycles per second or Hertz (Hz)

THz = 102 Hz GHz = 10 Hz MHz = 10°Hz KHz = 10° Hz

— Note: 1ns per cycle is 1GHz and 1ps per cycle is 1THz

Cycles Per Instruction (CPI): determined by the instruction set architecture (ISA)

which varies between CPUs/programs (divide clock cycles taken by instruction count)

Instruction Count: number of instructions executed by program

(determined by program, ISA, and compiler) (every instruction is 5 cycles for MIPS)

Elapsed Time: total time including processing, wait, and idle (perceived performance)
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e CPU Time: actual time spent processing instructions (user time and system time)

clock cycle count 1

CPU Time = instruction count X - - X
instruction count  clock freq

CPU Time = instruction count x CPI x clock period

MIPS Pipeline Stages

e IF (Instruction Fetch): retrieve instruction from memory

ID (Instruction Decode): decode instruction and load register values needed

e EX (EXecute): execute the instruction using the arithmetic logic unit (ALU)

MEM (MEMory access): modify or read memory

e WB (Write Back): write results back to registers

MIPS Pipeline Stages Details
e IF - Instruction Fetch

— load the 32-bit value from the address in memory stored in PC and pass it to ID

— increment pPC by 4
e ID - Instruction Decode

— receive 32-bit binary instruction from IF, decode it
— pass instruction, registers, and immediate values to EX

— if instruction is a branch and the branch condition is met then update pc
¢ EX - EXecute

— receive 32-bit register contents, the instruction, and destination register

(the instruction for 1w and sw is the addition of the offset)
— use the ALU (Arithmetic Logic Unit) to do the math for the instruction

— pass 32-bit result of the math, destination register, and instruction to MEM
e MEM - MEMory access

— receive 32-bit result of the math, destination register, and instruction
— if instruction is 1w or sw then laod or store memory (otherwise just pass on values)

— pass 32-bit math result or value loaded (for 1w), dest register, and instruction to WB
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e WB - Write Back

— receive 32-bit math result or loaded value, destination register, and instruction

— if instruction is not sw put result or loaded value into destination register

Pipelining

e Analogy: if you have multiple load of laundary you can dry while one load is washing

(compared to washing and drying the first load before starting on the second)
e the speedup is increased throughput (latency for each instruction is unchanged)

e max speedup when all stages are balanced (they all take the same amount of time)
time between instructionspipeinea = time between instructionsgeia / # of stages

MIPS instructions are not completely independent so some hazards may arise

e Structural: when two (or more) instructions require the same resource (Ex: ALU)

(instructions/stages must be executed in series rather than parallel)

e Data: when instructions modify data in different stages of the pipeline

(if ignored can result in race conditions)

e Control: occurs when the pipeline makes wrong decisions for its branch prediction

(brings instructions into pipeline that must be discarded)

We can just assume that MIPS will always avoid structural hazards

Data Hazards

add $s0, $t0, $t1
sub $t2, $s0, $t3

For this example the earliest can run sub is when its ID lines with WB

(this allows the first instruction to write it’s results by WB before the second reads it in ID)

) 200 400 600 800 1000 1200 1400 1600
Time T T T T T T T

T
add $s0, $t0, 511 | IF —F 1D -g w WE |
bubble bubble,; ( bubble bubble bubblé}
Re) R®) e
bubble bubble ) ( bubble bubble @
@ @
IF

— I;\:B MEM

b

sub $t2, $s0, $t3
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However if we use Forwarding we connect WB output to the WB input

Program
exacution _ 200 400 600
order Time . T T
(in instructions)

add $s0, $to, $t1 IF

800 1000

WB |

MEM We |

sub $t2, $s0, $t3

Note that if the previous instruction is 1w or sw the data is only ready at the MEM stage

Program

execution . 200 400 600 800 1000 1200 1400
order Time T T T . T T T
(in instructions) )

lw $s0, 20($t1) IF —S 1D MEM

MEM —EB

sub $t2, $s0, $t3

The forwarding connections diagram

bne
beq everything
jr else and
alr ,w addr regq) SW (value reg)
"IE 1D, "EX, ME M, WB
When data is ready:
everythlng
jalr else
jal
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Control Hazards

When branching we only know what the next instruction is after the ID stage

Program
execution
order

(in instructions)

200 400 600 800 1000 1200 1400
T T T T T T T

Time

Instruction Data

add $4, $51 $6 fetch Reg ALU access Reg
PredICtlon b 1. %2 40 Instruction R ALU Data R
correct eq $1, $2, 200 ps |_feteh g access | o9
~—————~|Instruction Data
Iw $3, 300($0) 200 ps| fetch Reg| ALU access |Ne9
Program
execution Time 2(']0 4(?0 G(IJO 8(.]0 10.00 12.00 14.00
order
(in instructions)
Prediction addse, 85,56 "] [neo| aw [ 22 e
incorrect -« |Instruction Data
beq $1, $2, 40 200 ps fetch Reg| ALU access |9
ubble/bubble/bubble/ bubble,
e @)
or $7, $8, $9 [instruction| Data
400ps | fewh Reg | ALU | s | P90

Thus when the pipeline makes the wrong choice for its branch prediction we stall for one cycle

(if we don’t make a prediction we would always need to stall for one cycle)
e Static branch prediction:

— predicts the brackwards branch is always taken (Ex: beq $x $y -10)

— predicts the forwards branch is never taken (Ex: beq $x $y 10)

e Dynamic branch prediction:

— hardware measures branch behaviour and attempts to predict future with history

RISC vs. CISC
Reduced Instruction Set Computer (RISC)

e emphasis on software, single-clock, reduced instruction only
e uniform instruction format with simple addressing modes
e typically larger code sizes with few data types in hardware

e direct execution of machine code, single result write at end
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Complex Instruction Set Computer (CISC)

e cmphasis on hardward, multi-cycle, complex instructions

variable length instruction format with complex addressing and memory access

small code size with complex data types in hardware

hybrid assembly language: microcode (indirect execution)

Memory and Caching

Memory Hierarchy
Going down the memory hierachy: memory gets cheaper, bigger, slower, and further from the CPU

Registers — Cache — Main Memory — Disk — Network Drives — Archive (tape, etc)
e Registers: very expensive, very low latency, very high throughput, not persistent
e Main Memory: cheap, some latency (100x slower than registers), not persistent

— address sent to memory controller which responds with value at that address

Disk: very cheap, very large latency (1000x slower than registers), persistent

e RAM: internally a 2D matrix but uses index-based access via memory bus

Static vs Dynamic RAM

— Static RAM (SRAM): used for caches
x not persistent, multiple transistors per bit, expensive, quite fast
— Dynamic RAM (DRAM): used for main memory

% single transistor per bit, cheaper, but slower

In 2008 this was the typical performance and cost of memory

Technology |Access Time $/GB

SRAM 0.5-2.5ns $2000-$5000
DRAM 50-70ns $20-$75

Disk 5,000,000-7,000,000ns |$0.20-$2

e Locality: minimizing stalls as slower memory is accessed by keeping a working set

— Temporal Locality: data used recently will likely be used again soon (loop)

— Spatial Locality: data close will likely be used soon (iteration through array)
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cache hit: data was found in cache

e cache miss: data was not found in cache (need to get from main memory)
e hit time: time it takes to fetch from cache
e miss penalty: time it takes to copy data to cache

— total time for miss is sum of hit time and miss penalty

block: collection of sequential bytes in memory

Direct-Mapped Cache

e Assume M blocks of cache memory each of size B and a request for address p

e Mapping for cache block is ¢ = (p/B) mod M

A e 32 blocks of memory (p =0, ..., 31)
>( N e 8 blocks of cache (M =8 and B = 7?)
e ¢ = 3 lowest bits of the block address
‘ J IS ~
00001 00101 01001 01101 10001 10101 11001 11101
Memory

Example: say B =4 and M =8 = 1000, then 11101115 has
e block address: 11101115 / 22 = 11101,
e cache address: 11101, mod 1000, = 101,
copy all the bytes 11101XX and tag with 11 then place into cache address 101

e Tag: used to identify which block of main memory was placed in the cache

(appending tag with cache address gives memory block address)

e Valid Bit: used to tell if cache block actaully has valid data
(1 if data is loaded, 0 if empty)

33



Block Size Considerations

e Larger blocks should reduce miss rate (due to spatial locality)
e However fewer cache blocks could mean increased miss rates
e larger blocks will have a greater miss penalty
Writing
e Write through: update both cache and main memory (each write operation takes longer)

e Write back: only update cache and mark block as dirty

(update main memory on eviction or in background)

e Write Buffer: dedicated buffer for dirty blocks

Associative Caches

e Fully associative: any block may go to any cache entry
— requires all entries to be search at once to find correct block (expensive hardware)
e n-way set associative: each set contains n entries

— the set to place in is determined by: (block num) mod (num of sets)

— only need to search for entries within a given set (cheaper)

Associative caches use the replacement policy of prefer empty otherwise evict least recently used

(LRU) (direct mapped does does not have any choices to make)

Associativity Example
Comparing 4-block caches with memory block access sequence: 0, 8, 0, 6, 8

e directly mapped

Block Cache | Hit/Miss Cache Content After Access
Address | Index 0 1 2 3
0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem|[8] Mem|[6]
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e 2-way set associative (each set holds up to two blocks, the two sets is a coincidence)

Block Cache | Hit/Miss Cache Content After Access
Address | Index Set0 Set 1
0 0 miss Mem[0]
8 0 miss Mem[0] | Mem[8]
0 0 hit Mem|[8]
6 0 miss Mem[0] | Mem[6]
8 0 miss Mem[8] | Mem|[6]
e fully associative
Block Hit/Miss Cache Content After Access
Address
0 miss Mem[0]
8 miss Mem[0] | Mem][8]
0 hit Mem][8]
6 miss Mem[0] | Mem[8] | Mem[6]
8 hit Mem[0] Mem|[6]

In general, increasing associativity decreses miss rate (but has diminishing returns), in addition it

gets more expensive (thus the choice depends on level in hierarchy)

Cache Performance

e CPU Time: the program execution time including the memory access
e Average Memory Access Time (AMAT): cache hit time + miss rate X miss penalty
e Multilevel Caches

— Primary (level-1) CPU cache: small, but fast (usually instruction speed)
— Level-2 cache services misses from L1 cache

x larger, slower, but still faster than main memory

x check that L1 cache is a misses before looking at 1.2
— Main Memory services L2 caches misses

— Most modern computers usually have L3 and sometimes 1.4
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CPU Time Example

e Instruction cache miss rate = 2%

Data cache miss rate = 4%

Miss penalty = 100 cycles

Base CPI (ideal cache) = 2
e memory accesses are 36% of instructions

Instruction cache miss: 0.02 x 100 = 2 Data cache miss: 0.36 x 0.04 x 100 = 1.44

Actual CPI = 2+2+ 144 =5.44

Average Memory Access Time (AMAT) Example

e 4ns clock
e hit time in cycles = 1 cycle
e miss penalty = 20 cycles to main memory

e cache miss rate = 5%

AMAT =4 ( 1+ 0.05 x 20 ) = 8ns

Multilevel Cache Exmaple

e CPU base CPI = 1, clock rate = 4GHz or 1/(4GHz) = 0.25ns
e miss rate = 2%
e 50% of program is lw/sw

e Main Memory access time = 100ns

With only the L1 cache (L1 is instruction speed)
e miss penalty = 100ns/0.25ns = 400 cycles
o effective CPI =1 + 0.5 x 0.02 x 400 = 5
Adding a L2 cache

e 1.2 access time — 5ns
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Global miss rate = 0.5% (chance of missing both L1 and L2 cache)

Primary miss with L2 hit: penalty = 5ns/0.25ns = 20 cycles

Primary miss with L2 miss: 100ns main memory access time = 400 cycles

effective CPI = 1 + 0.5 x 0.02 x 20 + 0.5 x 0.005 x 400 =1+ 0.2 + 1 = 2.2

Build and Execute

Classical Tool Chain
e Compiler: translates high level language into assembly program

e Assembler: translates assembly program into machine code in object file

Linker: combines multiple object files of machine code into program file

Loader: loads program file into main memory

Library: special object that can added to program file during linking or loading

Executable or
Source Code Assembly Code  Obiject File Library

text
if a: beq $2, $0, 1|——— | 0001000000 0001010000
b += 1 ——>|addi $3, $3, 1 0010000000 | é% 0010000000

.data

Compiler Assembler Linker
(binasm)

Libraries can be created or Loader
imported by the linker

Main Memory

Other Execution Approaches
e Interpretation

— exeucte source code directly

— execute binary code by software
e Byte Code: compile to intermediate binary representation

e Just-In-Time Compilation: compile during runtime
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Compiler

Source Code  Assembly Code

if a: beq $2, $0, 1
b+=1 — addi $3, $3, 1

e translates the program from the source language to target language (usually assembly code)

e typically followed by assembler to generate machine code

Basic Compilation Steps

e Scanning: source code to token sequence
e Syntax analysis: token sequence to parse tree

e Semantic analysis: use parse tree to generate symbol table

(type check the parse tree agsint the symbol table)

e Code generation: parse tree and symbol table to target language

Scanner / Tokenizer

e also called "Lexical Analysis"
e convert program text into stream of tokens
e some types of tokens

— keyword: for, while

— operator: +, &&

— constant: 1000, 3.5

— delimiter: :, ;

— variable name: minpos, maxtime

— subroutine name: power2, print
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Deterministic Finite Automata (DFA)

Also known as a deterministic finite state machine (FMS)

e finite set of states (exactly one start state, at least one final/accept state)
e finite set of input symbols known as the alphabet (doesn’t have to be english alphabet)

e finite set of transitions from one state to another based on input

DFA Example

Start state has arrow from nowhere and the final/accept states are double circles

e Consider the input "ab". We begin in the start state "|ab"
e We consume "a" to take the "a" transition to get "a|b"
e We consume "b" to take the "b" transition to get "ab|"

— Since the marker is at the end of the string we check it we are in an accept state (double
circle) and say that this DFA accepts the string "ab"

— string "a" does not land on an accept state so the DFA rejects it

— string "aa" gets stuck on "ala" so it is also rejected

Another Example: DFA over the alphabet

Y = {a,b,c} that accepts strings with an even

number of ¢ and any number of b and ¢

Non-deterministic Finite Automata (NFA)

e NFAs can have more than one transition for some input

(Ex: 1 — 2 and 1 — 3 may both consume "a")
— DFAs can only have one transition per input per state
e NFAs can include an € (empty) transition
— DFAs cannot change state without consuming input
e NFAs are much easier to design than its equivalent DFA (but harder to evaluate)

e We are always able to create an equivalent DFA from an NFA

39



NFA Example

e use the input string "|abab"
e after consuming the "a" we have two choices for "a|bab" so we create two clones

e at "ablab" we have two clones but notice that the right one has nowhere to go

e kill the right clone and let the left clone to consume "a" to get "aba|b"
e at "abab|" we again have 2 clone

e we say the NFA accepts "abab" since the right clone is in an accept state

Regular Expressions
e The set of all strings accepted by a DFA /NFA is called its language
e DFAs/NFAs accept a particular type of language: a regular language

Regular expressions (regex) are concise ways to define regular languages

e Y is the set of all legal characters
e JJ is the empty set

e ¢ is the empty string

Basic regex operations

e Alternation
R|S=RUS

e Concatenation

RS ={ab:a€ Rand be S}

e Kleene star
R*=¢|R| RR| RRR| ---
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Some basic examples
a* = {e,a,aa,aaa,...} bla* = {b,€,a,aa,aaa,...} (h|c)at = {hat, cat} hello = {hello}

Other regex operations

e plus matches one or more: a+ = {a, aa, aaaq, ...}

e 7 matches one or nothing: a? = {€,a}

e square brackets: [abc] = alblc [a-z] = any letter from a to z

e dot matches any single letter: .at = (al51jIAI7]...)at

e the escape character \ escapes the next character: \. = matches a dot
Examples:

e ab+ = {ab, abb, abbb, ...}

e (hlc)?at = {hat, cat,at}

e matching the different ways to write Hindel (Héndel, Haendel, Handel, Hendel)

[Hh| (ae|a|e|&)ndel

Converting Between Regex and NFAs/DFAs

a* a?
a
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Context-Free Grammer
Definitions
e terminal/token: an atomic symbol (number, char, etc)

e non-terminal/variable: an abstract component that does not literally appear in the input

— one of which is designated as the start symbol

— denoted using angle brackets < ... >
e production rules: expansion of non-terminals into terminals and/or non-terminals

— usually expand the leftmost non-terminal first (leftmost derivation)

A formal grammer is context free if its production rules can be applied regardless of the symbols

that surround it

Arithmetic CFG Example

<expr> — <term> <moreTerms>

<term> — <fractor> <moreFractors>

<term> — ( <expr> ) | int

<moreTerms> — € | + <term> <moreTerms> | - <term> <moreTerms>

<moreFractors> — £ | * <term> <moreFractors> | / <term> <moreFractors>

A leftmost derivation and parse tree for 7 + 34 using the rules

<expression> / \

=> <term> <moreTerms> (R1) o AT

=> <factor> <moreFactors> <moreTerms> (R2)

=> int <moreFactors> <moreTerms> (R4) / l \\

=> int <moreTerms> (R8) <> <MF> <T> <MT>
=> int + <term> <moreTerms> (R6) l \

=> int + <factor> <moreFactors> <moreTerms> (R2)

=> int + int <moreFactors> <moreTerms> (R4) k> M
=> int + int <moreTerms> (R8) l l

=> int +int (RS) ; A M

To evaluate the parse tree we used depth first search (DFS)
An alternative and much simplier Arithmetic CFG is

<expr> — int | ( <expr> <oper> <expr> )

<oper> —> + | - | x| /
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Language Specification

e good specification — good tree structure — easier evaluation — more automation
e cncode associativity (+ vs -) and precedence (+ vs %) in the grammar

e the decision problem of if the grammer has ambiguity is undecidable

however some ambiguities can be spotted (Ex: same non-terminals in rules)

Tools

e lex: scanner generator (define regular expression rule set)
— similar tools: flex, quex, etc
e yacc: parser generator (define and associate CFG rules with actions — interpreter)

— similar tools: byacc, bison, etc

The Assembler

e line by line translation (one assembly instruction to one machine code instruction)
e insert data for .word directive (and possibly other directives)
e ignores commands and blanks lines

e compute and insert address of each label

Instruction Format: Jump

oooo ooii iiii iiii iiii iiii iiii iiii

e 0 — opcode
e i — jump target
This is an instruction with large constant operand

® jump target = highd(PC)+ (i<<2)
(highest 4 bits of current PC plus immediate operand multiplied by 4)

e jal 35528

0000 1100 0000 0000 0010 0010 1011 0010
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Instruction Format: Immediate

0000 o0o0ss ssst tttt iiii diiii iiii idiii

e 0 — opcode
e 5, t — registers

e i — immediate operand

For instructions iwth register and constant operand

e 1w $1, 24(%2)

1000 1100 0100 0001 0000 0000 0001 1000

Isntruction Format: Register

0000 0O0ss ssst tttt dddd d4d000 O0ff ffff

e opcode of 000000
e s, t, d — registers

e { — function

For instructions with all operands being registers

e add $1, $2, $3 (add is function 100000)

0000 0000 0100 0011 0000 1000 0010 0000

e mult $2, $3 (add is function 011000) (also notice that 4 = 00000)

0000 0000 0100 0011 0000 0000 0001 1000

Linking
e This combines multiple object files (to avoid compiling the whole program each time)
e resolves external symbols (labels can refer to other object file(s))

e bundles everything to produce a single executable file
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Object File Format: Basics

e file header: meta information

e text segment: code
e data segment: static data
e defined external symbols: other objects files can refer to these labels
e undefined external symbols: labels must be found in other object files
e local sybmols (for debugging, relocation)

Relocation

e assembler produces object code starting at 0 so how do we combine multiple of such object

files
e relative addresses (beq $0, $0, 10) are not a problem
e absolute addresses, static data, must be fixed
— object file contains list of such code locations

e we adjust actual addresses in object code

Symbol Resolution

e replace symbol names with address
e lables/symbols must be unique (across all linked object files)
e class name and overloading: name mangling

— C++ exmaple:

x Before: int Example::compute(int x, float y);

x After: _ZN7Example7computeEif

Library

e collection of object files

e with or without preprocessing (internal relocation and name resolution)

e ready for linking with other object files
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Loading

e set up memory region(s) for new program
e load executable file from disk (perform late relocation and symbol resolution)

e create and start new process in os

Dynamic Linking
e dynamic linking: relocate and resolve symbols at load time

e dynamic library: combine object code at load time
(don’t add object code to executable file)

e shared library: keep only one copy of object code in memory

(special memory area or relocatable object code)

Dynamic Shared Library

e dynamic link library (DLL) on Windows
e modification apply to programs (no rebuilding necessary)
e can even rewrite symbols at load time

e slip wrapper between application and library
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