
CS 348: Introduction to Database Management
University of Waterloo

Instructor: Chao Zhang

Winter 2023

Andrew Wang

1

Table of Contents

Database Management 5
Data Storage . 5

File System . 5
Database . 6

Brief History of Data Management . 7
Database Management System (DBMS) . 7

Three Level Schema Architecture . 7
Data Independence . 7
Interfacing to the DBMS . 7
Transactions . 8
Types of Database Users . 8

The Relational Model of Data . 9
Definition of the Relational Model . 10
Properites of the Relational Model . 11
Integrity Contraints . 12

The Relational Algebra . 14
Selection . 14
Projection . 15
Cross Product . 16
Conditional Join . 16
Natural Join . 17
Rename . 17
Set-Based Relational Operators . 18
Relational Division . 19
Algebraic Equivalences . 20
Relational Completeness . 20

Structured Query Language (SQL) 20
Tables . 22

SQL DDL: Data Types . 22
Create Table . 22

Basic Structure of SQL Queries . 23
select Clause . 23
where Clause . 25
from Clause . 26
inner join Clause . 26
natural join Clause . 27
Basic Query Strucutre . 27

Additional Basic Operations . 28
as Clause . 28
String Operations . 29
like Operation . 29
between Operation . 30
Tuple Comparision . 30
Ordering Operations . 30

Set Operations . 31
Aggregate Functions . 32

group by Clause . 34

2

having Clause . 35
Unknown Values . 36

Null Values . 36
Three-Valued Logic . 36

Joins . 36
Outer Joins . 36
Join Expressions . 38
using Clause . 39
Natural Join Pitfalls . 39

Subqueries . 40
Nested Subqueries . 40
Scalar Subqueries . 41
Set Membership . 41
Set Comparison . 42
Empty Relations Testing . 44
Duplicate Tuples Testing . 45
Correlated Subqueries . 47
with Clause . 48

Data Modification . 48
Updating Table Schema . 48
Deletion . 49
Insertion . 49
Update . 50

Integrity Constraints . 51
not null Constraint . 51
primary key Constraint . 52
unique Constraint . 52
check Constraint . 53
foreign key Constraint . 53
Foreign Key Constraint Enforcement . 54
Deferred Constraint Checking . 57

Views . 57
Updating Views . 58

Access Control . 59
Granting and Revoking Privileges . 59
Roles . 59
Transfer of Privileges . 60

Indexes . 60
SQL from a Programming Language . 61

JDBC . 63
Prepared Statements . 64
Metadata Features . 64

Functions and Procedures . 64
Triggers . 67

Trigger Events . 67
Granularity . 68

Advanced Aggregations . 68
Ranking . 68
Windowing . 70

Recursion . 70

3

Data Modeling 71
Entity-Relationship Model (E-R Model) . 72

Entity Set . 72
Relationship Set . 73
Roles . 74
Relationship Set Degree . 74
Attributes . 75
Mapping Cardinality Constraints . 75
Total and Partial Participation . 76
General Cardinality Constraints . 77
Primary Keys . 77
Weak Entity Sets and Identifying Relationships . 78
Redundant Attributes in Entity Sets . 78
Specialization and Generalization . 79
Aggregation . 81
Entity-Relationship Design Issues . 81
Entity Set vs Relationship Set . 82
E-R Diagrams Summary . 82

E-R Diagram to Relational Tables . 84
Representation of Strong Entity Sets . 84
Representation of Relationship Sets . 85
Representation of Weak Entity and Relationship Sets . 86
Representation of Specialization and Generalization . 86
Aggregation . 87

Function Dependencies (FD) . 87
Functional Dependencies and Keys . 88
Functional Dependencies Implication . 88
Functional Dependencies Attribute Closure . 89

Schema Refinement . 90
Lossless-Join Decomposition . 90
Dependency Preservation . 91
Boyce-Codd Normal Form (BCNF) . 91
Third Normal Form (3NF) . 92
Minimal Cover . 93

Transactions 94
Concurrency and Power Failure . 94

SQL Transaction . 95
ACID . 95
Constraint Conflicts in SQLite . 96

4

Database Management

This course will study data databases from three viewpoints: database user, database designer, and the
database manager. It will teach how to use the database management system (DBMS) but treat it like a
black box, focusing on its functionality and interfaces. (CS448 database system implementation)

Formal definition of data given by ANSI:

• Representation of facts, concepts, or instructions in a formal manner suitable for communication,
intrepretation, or processing by humans or computers

• Any representation such as characters or analog quantities to which meaning is or might be assigned.
Generally, we perform operations on data or data items to supply some information about an entity

Informally, we say data is any information that needs to be recorded in an application.

We primarily concern ourselves with persistent data (data that should not be lost with power outages)
(volatile data is lost after a power cycle).

Example: a bank account

• Data: bank account belongs to a branch, have a number, owner, balance, etc.

• Persistency: balance can’t disappear after power outage

• Query: what is the balance in Bob’s account?

• Modification: Bob withdraws $100

Data Storage

File System

Before databases we had a file processing system, where the data is updated in manually by the program
(i.e. write/read directly from some location)

Disadvantages of file processing systems:

• Data redundancy and inconsistencies: having multiple copies of the same data leads to higher storage
and inconsistencies could occur when only one copy is updated

• Difficulty in accessing or modifying data: new requests for accessing or modifying data requires
writing a new application

• Integrity problems: to add constraints to restrict data entry requires changing the program

5

• Atomicity problems: difficult to return to state before a power failure (because it is difficult to ensure
program parts are atomic)

• Concurrent-access anomalies: difficult to support multiple access and update to data

• Security and access control: difficult to control user access to data

Database

Instead of solving these problems anew, we can use a DBMS to handle it (data independence).

• Database: A large and persistent collection of (more-or-less similar) pieces of information organized
in a way that facilitates efficient retrieval and modification

• Database Management System (DBMS): A program (or set of programs) that manages details
related to database storage and access for a database

DBMS Ideas (integrated control):

• Data Model: all data is organized in a well defined way

• Access Control: only authorized people are able to view/modify data

• Concurrency: multiple concurrent application and access/update data

• Database recovery: database can be rolled back so nothing is accidentally lost

Schema and Instance:

• Schema: A description of the data inferface to the database (i.e. how data is organized)

• Database Instance: A database (real data) that conforms to the given schema

Schema is like a class definition while the instance is an object created from that class.

Example: from the schema PROJ(PNO, PNAME, BUDGET) an possible instance could be:

PNO PNAME BUDGET
P1 Instrumentation 150000
P2 Database Develop. 135000

P3 CAD/CAM 250000

P4 Maintenance 310000

6

Brief History of Data Management

slides 13/27 to 16/27 and slides 24/27 to 26/27

maybe move to after next subsection?

Database Management System (DBMS)

Three Level Schema Architecture

• External schema (view): what the applications and user sees (may differ for different users)

• Conceptual schema: description of the logical structure of all data in the database (logical schema)

• Physical schema: description of physical aspects of how the data is stored (e.g. storage format,
low-level data structures, etc)

Data Independence

Applications do not access data directly but instead use an abstract data model provided by the DBMS.

There are two kinds of data independence:

• Logical: users of the external schema do not need to be aware of all the information at the logical
schema level

• Physical: users of the logical level and the external schema do not need to be aware of the complexity
of physical-level structure

Interfacing to the DBMS

Data Definition Lanuage (DDL): used to specify schemas

• Example: table for department can contain: dept name, building, and budget with each column
being associated with a specific data type

7

Data Manipulation Language (DML): used for specifying queries and updates

• Procedural DML: requires user to specify what data is needed and how to get data

• Declarative DML: require user to just specify what data is needed

• Example: find instructor ID and dept name of all instructors with budget of more than $95, 000

Transactions

Definition: A transaction is a unit of program execution that accesses and possibly updates data items.

Example: two transactions are made at the same time for the same account, if it is not handled properly
the full $1500 will not be deducted.

1 Transaction T1
2

3 withdraw(AC,1000)
4 Bal := getbal(AC)
5

6 if (Bal > 1000)
7 <give-money>
8 setbal(AC, Bal - 1000)
9

1 Transaction T2
2

3 withdraw(AC,500)
4 Bal := getbal(AC)
5

6 if (Bal > 500)
7 <give-money>
8 setbal(AC, Bal - 500)
9

DBMS ensures that every application can think it is the sole application accessing the data at that time.

ACID properties of the transactions ensured by the DBMS:

• Atomic: transactions occurs entirely, or not at all

• Consistency: each transaction preserves the consistency of the database

• Isolated: concurrent transactions do not interfere with each other

• Durable: once completed, transaction’s changes are permanent

Types of Database Users

• End user:

– Accesses the database indirectly through forms or other query-generating applications

– Generates ad-hoc queries using the DML

• Application developer:

– Designs and implements applications that access the database

• Database administrator (DBA):

– Manages conceptual schema and assists with application view integration

– Monitors and tunes DBMS performance

– Defines internal schema

– Is responsible for security and reliability

8

The Relational Model of Data

A data model specifies:

• the structure of the database (e.g. relations or tables)

• the operations for manipulating the data using that structure (e.g. relational algebra)

• a set of contraints that the databsea should obey (e.g. integrity constraints)

What we expect from a data model:

• Simplicity

• Ability to support data independence

• Declarative language support

The idea of the Relational Model is that all information is organized in relations (or tables).

Features:

• simple and clean data model

• powerful and declarative query/update language

• semantic integrity constraints

• data independence

Example of a Instructor Relation

Note: the order of the tuples is irrelevant (tuples may be stored in an arbitrary order)

9

Definition of the Relational Model

Informal Definition of the Relational Model:

• Database is a collection of relations (or tables)

• Each relation has a set of attributes (or columns)

• Each attribute has a name and a domain (or type)

– The domain elements are required to be atomic (indivisible)

• Each relation contains a set of tuples (or rows)

– Each tuple has a value for each attribute of the relation

– Duplicate tuples are not allowed (two tuples with all same attributes)

Formal Definition of the Relational Model:

• Domain: set of allowed values of each attribute, denoted by dom(D), where D is the domain name

• Relation:

– relation schema: R(A1 : D1, . . . , Ak : Dk) with

∗ name R

∗ A1, . . . , Ak is the set of distinct attribute names

∗ D1, . . . , Dk is a collection of (not necessarily distinct) domain names

– relation instance: a finite relation

• Database:

– database schema: finite set of uniquely-named relation schemas

– database instance: a relation instance Ri for each relation schema Ri

Example: Bibliography Database

• Database schema:
1 author(aid:int, name:string)
2 wrote(author:int, publication:int)
3 publication(pubid:int, title:string)
4 book(pubid, publisher, year)
5 journal(pubid, volume, no, year)
6 proceedings(pubid, year)
7 article(pubid, crossref, startpage, endpage)

Note: relation schemas are sometimes abbreviated by omitting the attribute domains

10

• Sample database instance (tabular form on right):

Properites of the Relational Model

Note:

• Relational schemas have named and typed attributes

• Relational instances are finite

Properties of a relation:

1. Based on (finite) set theory

• Instance as set semantics:

– No ordering among tuples

– No duplicate tuples

2. All attribute values are atomic

3. Degree (arity) = # of attributes in schema

4. Cardinality = # of tuples in instance

Note: The standard language for interfacing with relational DBMSs is Structured Query Language (SQL).
Unfortunately, there is a important difference between the Relational Model and the data model used by
SQL and relational RDBMSs.

The discrepancy between relations in Relational Model and tables in RDBMSs:

• Semantics of Instances

– Relations are sets of tuples

– Tables are multisets (bags) of tuples

By default, SQL tables can contain duplicate elements.

11

Integrity Contraints

A relational schema captures only the structure of relations

Idea: Extend relational/database schema with rules called constraints. An instance is only valid if it
satisfies all schema constraints.

Reasons to use constraints:

• Ensure that data entry/modification repects database design (shift s responsibility from applications
to DBMS)

• Protect data from bugs in applications

Types of Integrity Constraints:

• Tuple-level:

– Domain restrictions: restricting the domain (or type) of each attribute

∗ e.g. if student_id is integer then string is invalid

– Value comparisons: restricting the range of values of each attribute

∗ e.g. the only valid terms are {"Winter", "Summary", "Fall"}

• Relation-level: Key constraints

– Superkey : set of attributes for which no pairs of distinct tuples in the relation will ever agree
on the corresponding values

– Candidate key : a minimal superkey (minimal set of attributes that uniquely identifies a tuple)

– Primary key : a designated candidate key

– Example:

∗ instructor(ID, name, dept_name, salary)

Both {ID} and {ID, name} are superkeys, but only {ID} is a condidate key

12

• Database-level: Referential integrity

– Foreign key : if primary key A of relation S appearing as atribute(s) B of relation R, then B is
a foreign key from R, referencing S

∗ S is called a referenced relation and R is the referencing relation

– Foreign key constraints: a tuple in R with a non-null value for foreign key B that does not
match primary key value of a tuple in the referenced relation S is not allowed

– Referential integrity constraints: extended foreign key constraint, where referenced attribute
may not be a primary key

– Example:

∗ instructor(ID, name, dept_name, salary)

∗ teaches(ID, course_id, sec_id, semester, year)

∗ Foreign-key constraint: teaches.ID references instructor.ID

This means that on any database instance value of ID for each tuple in teaches must also be
the value of a ID for some tuple in instructor.

13

The Relational Algebra

The relational algebra consists of a set of operators. To query relational data we use a composition of
relational operators:

• Each relational operator takes one or two relations as input

• Each relational operator defines a single output/result relation in terms of its input

• Relational operators can be composed to form expression that define new relations in terms of
existing relations

Selection

σcondition(R)

• Result schema: same as R

• Result instance: subset of tuples in R that satisfies the condition

Example: find the instructors who are in the Physics department

14

The selection condition can include:

• any column of R or constants

• comparision (=, ̸=, >,≥, <,≤)

• Boolean connectives (∧,∨,¬)

Note: the condition should be able to be evaluated over each single row of the input table

Valid: σdept_name=“Physics”∧salary>80000(instructor)
Invalid: σsalary>every salary in instructor (instructor)

Projection

πattributes(R)

• Result schema: includes only the specified attributes

• Result instance: could have as many tuples as R, except that duplicates are eliminated

Example: list all instructors’ ID, name, and salary

Example: we can use projection on the result of selection like so

temp←σsalary>80000(instructor)
Result←πname,dept_name(temp)

To shorten this we can directly compose the two expressions into

πname,dept_name(σsalary>80000(instructor))

The result of this query is: {(Einstein, Physics), (Wu, Finance), (Brandt, Comp.Sci.), (Gold, Physics)}

15

Cross Product

R1 ×R2

• Result schema: has all atributes of R1 and all attributes of R2

• Result instance: includes one tuple for every pair of tpules in R1 and R2

• sometimes called the Cartesian product

Example:

Conditional Join

R1 ▷◁ condition R2

• equivalent to σcondition(R1 ×R2)

• condition is a Boolean expression involving attributes from both operand relations

R1.A θ R2.B where θ ∈ {=, ̸=, >,≥, <,≤}

• sometimes called the θ-join

Example:

16

Natural Join

R1 ▷◁ R2

1. Compute R1 ×R2 (renaming duplicate attributes)

2. Eliminate from the cross product any tuples that do have matching values for all pairs of attributes
common in scheme R1 and R2

3. Project out duplicate attributes

If no attributes in common, this is just a product

Consider the natural join of the instructor and teaches tables, which have the attribute ID in common

• Result(ID, name, dept_name, salary, course_id, sec_id, semester, year)

• Resulting relation will include one tuple for each tuple in the teaches relation

Rename

Rename the name of the relation, the names of the attributes, or both

• Rename relation R to S
ρS(R)

• Rename attributes of relation R
ρ(A→A′,...)(R)

• Rename relation R to S and the names of its attributes

ρS(A→A′,...)(R)

Output: a relation with the same rows as R, but named differently.

Example:

17

Set-Based Relational Operators

Definition: two schemas are union compatible if they both have the same number of fields with same
type for corresponding fields

Example:

For the following 3 set based relation operations the schemas of R and S must be union compatible:

• Union: all tuples that appear in either R or S or both (S and B must be union compatible)

R ∪ S

– e.g. find all course IDs taught in Fall 2017, Spring 2018, or both:

project course_id, then union

• Difference: all tuples that appear in R and do not appear in S (S and B must be union compatible)

R− S

– e.g. find all course IDs taught in Fall 2017 but not Spring 2018:

project course_id, then minus

18

• Intersection: all tuples that appear in both R and S (R and S must be union compatible)

R ∩ S

– e.g. find all course IDs taught in both Fall 2017 and Spring 2018:

project course_id, then intersect

Relational Division

R÷ S

• Used to answer queries involving all (e.g. which employess work on all critical projects)

• Attributes of S must be subset of attributes of R

• attr(R÷ S) = attr(R)− attr(S)

• Tuple t is in (R÷ S) iff (t× S) is a subset of R

Example: division is the inverse of product:

19

Example: which employees work on all critical projects? Works(Enum, Pno) and Critical(Pno)

Notice that product is not always the inverse of division (e.g. (Works ÷ Critical) × Critical)

Algebraic Equivalences

The following are all equivalent:

πname,course_id(σdept_name=“Physics”(σinstructor.ID=teaches.ID(instructor× teaches)))

πname,course_id(σdept_name=“Physics”(instructor ▷◁ instructor.ID=teaches.ID teaches))

πname,course_id(instructor ▷◁ instructor.ID=teaches.ID σdept_name=“Physics”(teaches))

πname,course_id((π ID,name(instructor)) ▷◁ instructor.ID=teaches.ID

(π ID,course_id(σdept_name=“Physics”(teaches))))

These all perform the same action but some run faster than others. More on this in database tuning topic.

Relational Completeness

Definition: a query language that is at least as expressive as relational algebra is relationally complete

Relational algebra and SQL are both relationally complete.

SQL even has additional expressive power because it captures aggregation, ordering, etc.

Structured Query Language (SQL)

The Structured Query Language (SQL) is made up of three sub-languages:

• SQl Data Manipulation Lnaugage (DML)

– SELECT statements performs queries

– INSERT, UPDATE, DELETE statements modify the table instance

• SQL Data Definition Lnaguage (DDL)

20

– CREATE, DROP statements modify the database schema

• SQL Data Control Language (DCL)

– GRANT, REVOKE statements enfore the security model

Database Schema Used for Examples

21

Tables

SQL DDL: Data Types

Some of the attribute types (or domains) defined in SQL:

• integer or int : machine-dependent finite subset of integers

– e.g. 4-byte integer type can store:

signed value ∈ [−2147483648, 2147483647] unsigned value ∈ [0, 4294967295]

• smallint : small integer (machine-dependent subset of integer domain)

– e.g. 2-byte smallint type can store:

signed value ∈ [−32768, 32767] unsigned value ∈ [0, 65535]

• numeric(p, q): p-digit numbers, with q digits right of the decimal point

– decimal point and minus sign are not counted in p

– e.g. numeric(3, 1) allows 44.5 to be stored exactly but not 444.5 or 0.32

• real, double precision: floating point and double-precision floating point numbers with machine-
dependent precision

• float(n): floating point number, with user-specified precision of at least n digits

• char(n): fixed length character strings, with user-specified length n

– string shorter than n will be padded to n length by appending spaces

• varchar(n): variable length character strings, with user-specified maximum length n

• date: describes a year, month, day

• time: describes a hour, minute, second

• timestamp: describes a data and the time on that date

• interval : allows computation based on dates and times on interval

Create Table

A SQL relation is defined using the create table command:
1 create table r (
2 A1 D1,
3 ...,
4 An Dn,
5 integrity-constraint-1,
6 ...,
7 integrity-constraint-k)

• r is the name of the relation

• Ai is an attribute name with domain of values Di

• We will see more about integrity constraints later, for now we have:

– primary key (A1, ..., An)

22

– foreign key (A1, ..., An) references r

SQL prevents any update to the database that violates an integrity constraint

Example:
1 create table instructor (
2 ID char(5),
3 name varchar(20),
4 dept_name varchar(20),
5 salary numeric(8,2),
6 primary key (ID),
7 foreign key (dept_name) references department)

Basic Structure of SQL Queries

select Clause

select clause lists attributes desired in the query result (projection operation in relational algebra)

• SQL names are case insensitive so the following queries are equivalent:

– select dept_name from instructor

– select Dept_Name from instructor

– select DEPT_NAME from instructor

• Default is to allow duplicates in relations and query results

– To eliminate duplicates from query result use select distinct

• Asterisk in select clause denotes all attributes

– e.g. select * from instructor will return the entire instructor table

• select clause can be used with arithemetic expressions {+, −, ∗, /} to modify attributes

Examples:

• select dept_name from instructor

– finds the department names of all instructors

• select distinct dept_name from instructor

– finds department names of all instructors then removes duplicates

23

• select distinct dept_name, salary from instructor

– find department names and salary of all instructors then remove duplicate pairs

• select * from instructor

• select ID, name, salary/12 as monthly_salary from instructor

– compute monthly salary of each instructor

24

where Clause

where clause specifies conditions on the query result (selection operation in relational algebra)

• Comparisons can be applied to results of arithmetic expresions

• Comparison operations are {<, <=, >, >=, =, <>}

• Logical connectives are {and, or, not}

Examples:

• find all instructors in Comp. Sci. department
1 select name
2 from instructor
3 where dept_name = ’Comp. Sci.’

• find all instructors in Comp. Sci. department whose monthly salary is greater than 5000

1 select name
2 from instructor
3 where dept_name = ’Comp. Sci.’ and salary/12 > 5000

25

from Clause

from clause lists the relations involved in the query (cartesian product operation in relational algebra)

Example: select * from instructor, teaches

• Result is the cross product of instructor and teaches

• Generates every possible instructor-teaches pair (common attributes are renamed with relation name)

inner join Clause

inner join is clause is equivalent using from and where (conditional join in relational algebra)

Example: find the names of all instructions who are teaching a course

1 select *
2 from instructor, teaches
3 where instructor.ID = teaches.ID

1 select *
2 from instructor inner join teaches
3 on instructor.ID = teaches.ID

26

Example: name and course_id of instructors in Comp. Sci. dept who have taught a course in 2017

1 select name, course_id
2 from instructor, teaches
3 where instructor.ID = teaches.ID
4 and instructor.dept_name = ’Comp. Sci.’
5 and year = 2017

1 select name, course_id
2 from instructor inner join teaches
3 on instructor.ID = teaches.ID
4 where instructor.dept_name = ’Comp. Sci.’
5 and year = 2017

natural join Clause

natural join automatically removes one of the two join attributes

Example:

• Query 1: select * from instructor, teaches

– instructor.ID, name, dept_name, salary, teaches.ID, course_id, sec_id, semester, year

• Query 2: select * from instructor natural join teaches

– ID, name, dept_name, salary, course_id, sec_id, semester, year

Basic Query Strucutre

A typical SQL query of attributes Ai from relations rk has the from:

1 select A1, A2, ..., An
2 from r1, r2, ..., rm
3 where condition

This is called an SFW (select-from-where) or SPJ (select-project-join) query.

27

It is equivalent to the following relational algebra expression:

πA1,...,An(σcondition(r1 × · · · × rm))

Additional Basic Operations

as Clause

as clause changes the names of attributes and relations (rename in relational algebra)

Example:
1 select name as instructor_name, course_id
2 from instructor, teaches
3 where instructor.ID = teaches.ID

Example: Find the ID and name of insturctors who earn more than the instructor whose ID is "12121’

• The issue that is we need to compare tuples in the same relation for the join
1 select T.ID, T.name
2 from instructor as T, instructor as S
3 where T.salary > S.salary and S.ID = ’12121’

This works but the performance is pretty bad, we will see a better method to do this later.

28

String Operations

• SQL string are enclosed by single quotes: ’Computer’

– Single quotes in a string is denoted using two single quotes: ’It’’s all right’

• SQL standard specifies that string comparison is case sensitive

– ’database’ = ’DataBase’ should be false but not all DBMS follow this (e.g. MySQL)

• SQL permits a variety of string functions:

– concatenation

– upper and lower case conversions

– string length, substrings, etc (check DBMS manual for more)

like Operation

like is a string-matching operation for string pattern matching.

• Two special characters are used for describing patterns

– percent %: matches any substring

– underscore _: matches any character

• Patterns are case sensitive

• Use escape to define an escape character

– e.g. to match the string “100%” we use: like ’100\%’ escape ’\’

• Some pattern matching examples:

– ’Intro%’ matches any string that begins with “Intro”

– ’%Comp%’ matches any string containing “Comp" as a substring

– ’___’ matches any string of exactly three characters

– ’___%’ matches any string of at least three characters

29

Example: find the names of all instructors whose name includes the substring “in”
1 select name
2 from instructor
3 where name like ’%in%’

between Operation

Find the names of all instructors with salary between $90, 000 and $100, 000

1 select name
2 from instructor
3 where salary >= 90000 and salary <= 100000

1 select name
2 from instructor
3 where salary between 90000 and 100000

Tuple Comparision

Find the names of instructors in the department of Biology and the IDs of courses taught by them

1 select name, course_id
2 from instructor, teaches
3 where instructor.ID = teaches.ID
4 and dept_name = ’Biology’

1 select name, course id
2 from instructor, teaches
3 where (instructor.ID, dept_name)
4 = (teaches.ID, ’Biology’)

Ordering Operations

order by attr is followed by asc for ascending or desc for descending

• By default order by assumes asc

• Can sort by multiple attributes

30

List all instructor names alphabetically
(ascending)

1 select name
2 from instructor
3 order by name asc

List all instructor names alphabetically
(descending)

1 select name
2 from instructor
3 order by name desc

Sort two attributes in ascending order
1 select dept_name, name
2 from instructor
3 order by dept_name, name

Sort two attributes in descending order
1 select dept_name, name
2 from instructor
3 order by dept_name, name desc

Set Operations

Set operations in SQL and Relational Algebra (RA):

SQL RA

union ∪
intersect ∩
except −

• When using union, intersect, except the duplicates will be removed

– To retain duplicates use union all, intersect all, except all

31

– Not every DBMS supports intersect all and except all, e.g. SQLite

• The requirements to use set operations is that the two schemas be union compatible

– Same number of attributes

– Same type for corresponding attribute

Example: SQL set operations

Aggregate Functions

Definition: an Aggregate Function takes the values of a table column and outputs a single scalar value

SQL standard aggregate functions:

• avg finds average value

• min finds minimum value

• max finds maximum value

• sum gets sum of values

• count gets number of values

32

Examples:

• find the average salary of instructors in Comp. Sci. department
1 select avg(salary) as avg_salary
2 from instructor
3 where dept_name = ’Comp. Sci.’

• count the number of tuples in the instructor table
1 select count(*)
2 from instructor

• count the number of distinct department names in the instructor table
1 select count(distinct dept_name)
2 from instructor

33

group by Clause

1 select ...
2 from ...
3 where ...
4 group by list_of_columns

1. Compute from (×)

2. Compute where (σ)

3. Compute group by

• group rows accround to the values of group by columns

4. Compute aggregate functions for each group

• for aggregation functions with distinct inputs, first eliminate duplicates within the group

Notes:

• Number of rows in final output = number of groups

• Aggregate query with no group by clause treats all the rows as a single group

• Multiple aggregate functions can be used in select

• If a query uses aggregation/group by, then every column referenced in select must appear either

– in aggregate functions

– in group by list

Example: find the average salary of instructors in each department
1 select dept_name, avg(salary) as avg_salary
2 from instructor
3 group by dept_name

34

Example: every column referenced in select must appear in an aggregate function or the group by list

having Clause

1 select ...
2 from ...
3 where ...
4 group by ...
5 having condition

This clause is used to filter gorups based on group properties (e.g. aggregate values, group by column
values)

1. Compute from (×)

2. Compute where (σ)

3. Compute group by

• group rows accround to the values of group by columns

4. Compute aggregate functions for each group

• for aggregation functions with distinct inputs, first eliminate duplicates within the group

5. Compute having (another σ over the resulting relation in step 4)

Example: find the names and average salaries of all departments whose average salary is over 42000
1 select dept_name, avg(salary) as avg_salary
2 from instructor
3 group by dept_name
4 having avg(salary) > 42000

35

Unknown Values

Null Values

In every domain the special value null indicates unknown or missing data.

Example: user(uid, name, age)

• Value unknown: we do not know Bob’s age

• Value missing: Bob did not fill in his name so his name is missing

Three-Valued Logic

When we compare a null with another value (including another null) the result is unknown

If the expression contains connectives like and, or, not we evalute them using three-valued logic:

true = 1, false = 0, unknown = 0.5
x and y = min(x, y)
x or y = max(x, y)

not x = 1− x

• The where and having clauses only select rows for output if condition is true.

• Aggregate functions ignore null except count(*).

Truth tables:

Example: the following is NOT equivalent

1 select name
2 from instructor
3 where salary = null

1 select name
2 from instructor
3 where salary is null

• salary = null will always produce an unknown as we are comparing null to another value with =

• salary is null is the proper way to check if the is null

Joins

Outer Joins

Outer joins are an extension of the join operation that avoid loss of information

• Dangling tuples: tuples from one relation that do not match tuples in other relation in join result

36

• Compute the (inner) join then add dangling tuples padded with null

Example:

1 select *
2 from student natural join takes

Tuples from one relation that do not match tuples in the other relation are excluded in a join.
In this example the student “Snow” does not match any tuple in takes.

To produce the Expected Query Result we need to perform:
1 select *
2 from student left outer join takes on student.ID = takes.ID

37

Note: even select * from student, takes on student.ID = takes.ID does not result in expected

For T join S we choose which dangling tuples to retain using:

• left outer join or left join: keep all tuples in T (left side)

• right outer join or right join: keep all tuples in S (right side)

• full outer join or full join: keep all tuples in T plus all tuples in S

Somewhat confusing graphic

Highly suggest going to db-book.com to try out some examples there.

Join Expressions

Given the relations T (A,B) and S(A,C)

• Comparison operators < comp > are: <, ≤, >, ≥, =, <>

• Inner join expressions:
1 ... from T, S where T.A <comp> S.A ...
2 ... from T join S on T.A <comp> S.A ...
3 ... from T inner join S on T.A <comp> S.A ...
4 ... from T natural join S ...

• Outer join expressions:
1 ... from T full outer join S on T.A <comp> S.A ...
2 ... from T left outer join S on T.A <comp> S.A ...
3 ... from T right outer join S on T.A <comp> S.A ...
4 ... from T full join S on T.A <comp> S.A ...
5 ... from T left join S on T.A <comp> S.A ...
6 ... from T right join S on T.A <op> S.A ...
7 ... from T natural full outer join S ...

38

db-book.com

8 ... from T natural left outer join S ...
9 ... from T natural right outer join S ...

10 ... from T natural full join S ...
11 ... from T natural left join S ...
12 ... from T natural right join S ...

using Clause

... join S using (list_of_attributes)

• Specifies which columns should be equated and removes duplicate attributes in the result relation

• using clause can be usd with full, left, or right outer joins

Example: given relations T (A,B) and S(A,C) the following are equivalent
1 select T.A, B, C
2 from T join S on T.A = S.A

1 select *
2 from T natural join S

1 select *
2 from T join S using(A)

Natural Join Pitfalls

Given T (A,B,D) and S(A,C,D)

• For any tuple (a, b, d) in T and any tuple (a′, c′, d′) in S check if a = a′ and d = d′

1 select A, B, C from T natural join S

• For any tuple (a, b, d) in T and any tuple (a′, c′, d′) in S check only that a = a′

1 select T.A, B.C from T inner join S on T.A = S.A

1 select A, B, C from T join S using (A)

Given the relations
1 student(ID, name, dept_name, tot_cred)
2 takes(ID, course_id, sec_id, semester, year, grade)
3 course(course_id, title, dept_name, credits)

To list the name of students along with the titles of courses they have taken
1 select name, title
2 from (student natural join takes) join course using (course_id)

The following is incorrect because natural join will require that both course_id and dept_name match
1 select name, title
2 from student natural join takes natural join course

39

Subqueries

Nested Subqueries

Recall that a select-from-where (SFW) query is an expression of the form:
1 select A1, ..., An
2 from r1, ..., rm
3 where condition

A subquery is a SFW expression that is nested within another query.

A subquery even be nested within an SFW query:

• select: Ai can be replaced by a subquery that generates a single value

• from: ri can be replaced by any valid subquery

• where: condition can be replaced with an expression of the form

B <op> (subquery)

where B is an attribute and < op > will be seen later

Example:

• Find average instructor’s salaries of departments where the average salary is greater than $42, 000

1 select dept_name, avg_salary
2 from (select dept_name, avg(salary) as avg_salary
3 from instructor
4 group by dept_name)
5 where avg_salary > 4200

• Find maximum across all departments of the total of all instructors’ salaries in each department
1 select max (tot_salary)
2 from (select dept_name, sum (salary) as tot_salary
3 from instructor
4 group by dept_name)

40

Scalar Subqueries

Subqueries that only returns a single tuple can be used as a value in where and select clauses

Example: find all instructors whose salary is above average
1 select name
2 from instructor
3 where salary > (select avg(salary)
4 from instructor)

If the subquery returns more than one tuple then things will go wrong.

Set Membership

• Check if x is in the result of subquery (corresponds to intersect clause)

x in (subquery)

• Check if x is not in the result of subquery (corresponds to except clause)

x not in (subquery)

Example:

• Find all courses taught in both Fall 2017 and Spring 2018 semesters

41

• Find all courses taught in the Fall 2017 semester but not in the Spring 2018 semester

• in and not in operators can be used on enumerated sets
1 select distinct name
2 from instructor
3 where name not in (’Mozart’, ’Einstein’)

• in and not in operators can be used on attribute relations

– Find the total number of (distinct) students who have taken course sections taught by the
instructor with ID 110011

1 select count (distinct ID)
2 from takes
3 where (course_id, sec_id, semester, year)
4 in (select course_id, sec_id, semester, year
5 from teaches
6 where teaches.ID=’10101’)

Set Comparison

• for each one (universal quantification)

x <comp> all (subquery)

• at least one (existential quantification)

x <comp> some (subquery)

42

Example:

• Names of instructors whose salary is greater than salary of all instructors in the Comp. Sci.

– Notice that we can use max instead of all

• Names of instructors whose salary is greater than salary of some instructor in the Comp. Sci.

– Notice that we can use min instead of some

43

Empty Relations Testing

• If the reuslt of the subquery is non-empty then return true

exists (subquery)

• If the results of the subquery is empty then return false

not exists (subquery)

Example:

• Find all courses taught in both the Fall 2017 semester and in the Spring 2018 semester

• Find all courses taught in the Fall 2017 semester but not in the Spring 2018

– Query result is: CS-315, CS-319, CS-319, FIN-201, HIS-351, MU-199

44

• Find all students who have taken all courses offered by in the Biology department

Duplicate Tuples Testing

• If the result of the subquery contains no duplicate tuples then return true

unique (subquery)

• If the result of the subquery contains duplicate tuples then return true

not unique (subquery)

Example:

• Find all courses that were offered at most once in 2017

45

• Find all courses that were offered at least twice in 2017

46

Correlated Subqueries

• A subquery that uses a correlation attribute from an outer query

• Semantic: for each tuple obtained from the outer query, compute the inner query

• Correlated subqueries can be used in the select and where clauses of SFW queries

• Nested subqueries in the from clause cannot use correlation variables from other relations in the
same from clause, unless the subqueries are prefixed by the lateral keyword

Example:

• Find all instructors whose salary is above average for their department
1 select name
2 from instructor as S
3 where salary > (select avg(salary)
4 from instructor
5 where dept_name = S.dept_name)

• Print the names of each instructor, along with their salary and the average salary in their department
1 select name, salary,
2 (select avg(salary)
3 from instructor
4 where dept_name = S.dept_name) as dept_avg
5 from instructor as S

47

– An alternative way to do the same thing:
1 select name, salary, dept_avg
2 from instructor T,
3 lateral (select avg(salary) as dept_avg
4 from instructor S
5 where T.dept_name = S.dept_name)

with Clause

To define a temporary relation:

with temp_r (list_of_attributes) as (subquery)

Example: find all departments where the total salary is greater than the average of the total salary at
all departments

1 with dept_total (dept_name, value) as
2 (select dept_name, sum(salary)
3 from instructor
4 group by dept_name),
5 dept_total_avg (value) as
6 (select avg(value)
7 from dept_total)
8 select dept_name
9 from dept_total, dept_total_avg

10 where dept_total.value > dept_total_avg.value

By default just use the with clause, it is almost powerful enough to do almost anything you need.

Data Modification

Updating Table Schema

alter table r add A D

• Add attribute A of type D to table r

• For existing tuples in r, the values of A are assigned null

alter table r drop A

• Drop attribute A in table r

• Dropping of attributes is not supported by many databases (e.g. SQLite)

48

alter table r rename column old_name to new_name

• Rename column old_name to column new_name in table r

alter table r modify A data_type

• Change the type of attribute A to data_type in table r

Deletion

drop table instructor

• Delete the instructor relation (instance + schema)

delete from instructor

• Delete all instructors (instance)

1 delete from instructor
2 where dept_name = ’Finance’

• Delete all instructors from the Finance department

1 delete from instructor
2 where dept_name in (select dept_name
3 from department
4 where building = ’Watson’)

• Delete all tuples in the instructor relation for those instructors associated with a department located
in the Watson building

1 delete from instructor
2 where salary < (select avg (salary)
3 from instructor)

• Delete all instructors whose salary is less than the average salary of instructors

Insertion

1 insert into course
2 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4)

1 insert into course (course_id, title, dept_name, credits)
2 values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4)

• Add a new tuple to course

1 insert into student
2 values (’3003’, ’Green’, ’Finance’, null)

• Add a new tuple to student to tot_creds set to null

• When inserting partial rows, the values of omitted attributes are set to null

49

1 insert into instructor
2 select ID, name, dept_name, 18000
3 from student
4 where dept_name = ’Music’ and total_cred > 144

• Make each student in the Music dept who has earned more than 144 credit hours an instructor in
the Music dept with a salary of $18, 000

1 insert into student
2 select *
3 from student

• The insertion will insert infinite tuples if the primary key constraint on student is absent

Note: SQL evaluates the select statement fully before it performs any insertions

Update
1 update instructor
2 set salary = salary * 1.05

• Give a 5% salary raise to all instructors

1 update instructor
2 set salary = salary * 1.05
3 where salary < 70000

• Give a 5% salary raise to those instructors who earn less than 70000

1 update instructor
2 set salary = salary * 1.05
3 where salary < (select avg (salary)
4 from instructor)

• Give a 5% salary raise to instructors whose salary is less than average

1 update instructor
2 set salary = salary * 1.03
3 where salary > 100000;
4 update instructor
5 set salary = salary * 1.05
6 where salary <= 100000;

• Increase salaries of instructors whose salary is over $100, 000 by 3% and all others by 5%

• Note that the order is important

1 update instructor
2 set salary = case
3 when salary <= 100000 then salary * 1.05
4 else salary * 1.03
5 end

• case can be used in any statement or clause that allows a valid expression

50

Integrity Constraints

Declared as part of the schema and enforced by the DBMS

• Restrictions on allowable data in a database

– In addition to the simple structure and type restrictions imposed by the table definitions

• Example:

– An instructor name cannot be null

– No two instructors can be have the same insturctor ID

– Budgest of a department must be greater than $0.00

– Every dept name in course relation must have a matching dept name in the dept relation

Type of SQL Constraints:

• not null

• primary key

• unique

• check (<cond>)

• foreign key

• assertion

– specifying general constraints but not supported by any DBMS

not null Constraint

not null prohibits the insertion of a null value for an attribute

Example:

51

primary key Constraint

primary key prohibits the insertion of values that already exist for attributes

• Only one primary key constraint per table

• Does not permit null values

Example:

unique Constraint

unique specifies that no duplicate tuples are allowed for attributes

• Any number of unique constraints per table

• Permits null values (if specified without not null)

Example:

52

check Constraint

check (<cond>) ensures that the check condition is not false

• Only checked when the tuple/attribute is inserted/updated

• Accepted if the condition returns true or unknown

Example:

foreign key Constraint

foreign key attr references T ensures that the value of attr exists the in the table T

Example: if dept_name appears in instructor, it must appear in department

53

• foreign key specifies that:

– a value that appears for a given set of attributes in one relation (referencing relation)

– also must appear for a certain set of attributes in another relation (refereneced relation)

• Referenced column(s) must be either primary key or have explicit unique constraints

• Referencing column(s) form a foreign key

Remarks:

• If the referenced attributes are omitted, then the foreign key references the primary key

– e.g. foreign key (dept_name) references department

• Attributes of foreign key are allowed to be null (if not declared to be not null)

– In this case the foreign key constraint is said to be satisfied

Foreign Key Constraint Enforcement

• Modification to the referencing relation

– Foreign key does not impose constraints on deletion

– insertion and updates require verifying the foreign key constraints

• Modifications on referenced relation

– Foreign key does not impose constraints on insertion

– deletion and updates require verifying the foreign key constraints

∗ Option 1: throw an error (default)

∗ Option 2: set referencing attributes to null

∗ Option 3: cascade the changes to referencing attributes

54

Example: insertion in referencing relation

Example: deletion in referenced relation

• Option 1: throw an error

55

• Option 2: set referencing attributes to null

• Option 3: cascade the chagnes to referencing attributes

56

Deferred Constraint Checking

In some cases due to constraint requirements the first insertion will always violate a constraint:
1 create table dept
2 (name char(20) primary key,
3 chair char(30) not null,
4 foreign key (chair) references prof(name));
5

6 create table prof
7 (name char(30) primary key,
8 dept char(20) not null,
9 foreign key (dept) references dept(name));

Since dept and prof reference each other we cannot insert either

In such a case deferred constraint checking is necessary

• Check only at the end of a transaction (of multiple insertions)

• Allowed in SQL as an option (go read a manual)

Views

Recall the three-level schema architecture:

• External schema

• Conceptual schema

• Physical schema

A view is like a virtual table:

• Defined by a query, which describes how to compute the view contents

• Can be used in queries just like a regular table

57

• Stored as a query expression by a DBMS, instead of in actual tables

Views are used to hide complexity and data from users for logical data independence.
(we can change the schema of actual data, and person still calls same view)

Example:

Updating Views

Requirements for a view to be updateable:

• The from clause can have only one database relation

• select clause contains only attribute names of the relation

– Does not have any expressions, aggregates, or distinct specification

• any atribute not listed in the select clause can be set to null

• The query does not have a group by or having clause

i.e. an SFW query on a single relation without arithmetic expressions

Note that even if we follow all these there are still some cases where things go wrong:
1 create view history_instructors as
2 select *
3 from instructor
4 where dept_name=’History’
5 with check option;

This will reject insertions that do not satisfy the where clause condition

Example: notice that the tuple created in the actual table has null values

58

Access Control

Authorize users a combination of privileges (select, insert, update, delete) on relations, views, etc.

• e.g. student can’t see other students’ grades

• e.g. the instructor can assign/update grades to only their own students

Granting and Revoking Privileges

Privilege list: select, insert, update, delete, all

• grant <privilege list> on <relation or view> to <user list>

• revoke <privilege list> on <relation or view> to <user list>

Note: the grantors must hold the privilege they are granting

Example:

• grant select on department to Amit, Satoshi

• revoke select on department from Satoshi

Roles

Instead of managing privileges on the individual level, we can grant privileges to roles.

Example:
1 create role instructor;
2 grant select on takes to instructor;
3 create role dean;
4 grant instructor to dean;
5 grant dean to Satoshi;

59

Transfer of Privileges

Examples:

• grant select on department to Amit with grant option

– Give Amit select privilege on department and allow Amit to grat the privilege to others

• revoke select on department from Amit restrict

– Revoke select privilege on department from Amit

• revoke select on department from Amit cascade

– Revoke select privilege on department from Amit and others granted by Amit

Indexes

An index is an auxiliary persistent data structure to speed up operations.

• Search tree (e.g. B+-tree), lookup table (e.g. hash table), etc.

• Typically created automatically by the DBMS for primary key and unique attributes

• An index on R.A can speed up accesses of the form:

– R.A = value

– R.A > value (depending on the index type)

Example:
1 create index ins_name_index on instructor (name);
2 create unique index ins_name_index on instructor (name);
3 drop index ins_name_index

An error will occur on the second command if name is not a candidate key

60

SQL from a Programming Language

We have two method to write SQL in a programming language:

• Embedded SQL: example in C

61

– SQL queries are hard coded into the program

– Translated into function calls at compile time by preprocessors

• Dynamic SQL: example in Java

– SQL query as a string

– String is submitted as the query and retrieve the result into program varaibles a tuple at a time

• JDBC (Java), ODBC (C/C++/VB), Python (psycopg2), etc.

– All based on the SQL/CLI (Call-Level Interface) standard

• Application program sends SQL commands to the DBMS at runtime

• Responses/results are converted to objects in the application program

62

JDBC

JDBC is the Java API for communicating with database systems supporting SQL

• Variety of features for querying and updating data along with retrieving query results

• Able to perform metadata retrieval such as names of tables and names and types of table attributes

• Model for communicating with the database:

1. Open a connection

2. Create a statement object

3. Execute queries using the statement object to send queries and fetch results

Example: a breakdown of the JDBC example we saw earlier

• Executing statements:

– executeQuery() for select

∗ e.g. stmt.executeQuery("select ...")

– executeUpdate() for update, insert, delete, and create table

∗ e.g. stmt.executeUpdate("insert ..")

• Geting result fields:

– The following is equivalent if dept_name is the first attribute of the resulting relation

∗ e.g. resultSet.getString("dept_name")

∗ e.g. resultSet.getString(1)

63

• Dealing with null values:

– Call get() to get a value of an attribute then to check if null use resultSet.wasNull()

– e.g.
1 int a = rs.getInt("a");
2 if (rs.wasNull())
3 Systems.out.println("Got null value");

Prepared Statements

A prepared statement is a precompiled SQL statement (precompile once then use many times)

Example:

Example: SQL Query 2 is an examples of a SQL injection where the quote is escaped with another quote:

Using prepared statements would prevent this attack because the input string would have escaped.

Metadata Features

Example: print out the names of types of all columns of a result set (resulting relation)
1 ResultSetMetaData rsmd = rs.getMetaData();
2 for(int i = 1; i <= rsmd.getColumnCount(); i++) {
3 System.out.println(rsmd.getColumnName(i));
4 System.out.println(rsmd.getColumnTypeName(i));
5 }

Functions and Procedures

Persistent Storage Module (PSM): provides constructs that give SQL almost all the power of a general-
purpose programming language.

64

1 create function func_name(param_decls)
2 returns return_type
3 local_decls
4 func_body;

1 create procedure proc_name(param_decls)
2 local_decls
3 proc_body;

1 call proc_name(params);

Inside the function/procedure body we have:

• Variables: set variable = call func_name(params);

• Assignment using scalar query results: select ... into ...

• Loop constructs: for, repeat until, loop

• Flow control: if-else-then

• Exception handlers (check your DBMS manual)

Examples:

65

Remark: DBMS implementations have non-standard versions of the SQL standard syntax (e.g. Oracle,
Microsoft SQL Server, PostgreSQL all differ from standard)

Example: PostgresSQL function and procedure:

66

Triggers

A trigger is an event-condition-action (ECA) rule

• When event occurs, test condition, if condition s satisfied, execute action

• This is a generalization of the integrity condition constraints we saw earlier

Example:

Trigger Events

• The types of events include:

– insert on table

– delete on table

– update on table

67

• The action can be executed:

– after the data is modified

– before the data is modified

Example:

Granularity

The triggers can be activated:

• for each row :

– Fires once for each row affected by the triggering event

∗ If no rows where modified then trigger does not fire

– referencing new row or referencing old row

• for each statement :

– Fires once per triggering event

∗ Regardless of whether any rows are modified

– referencing new table or referencing old table

∗ Refers to temporary tables (aka transition tables) containing affected rows

– Can only be used with after triggers

Statement-level triggers can be more efficient when dealing with SQL statements that update many rows.

SQLite only implements for each row.

Advanced Aggregations

Ranking

Finds a ranking value for each row.

• Multiple values can have same rank but the next rank will be number of elements before it

68

– e.g. 1: P8, 2: P2, 2: P5, 4: P9, etc

• Rank of null values can be controlled by:

– nulls first (default)

– nulls last can be added after desc

• Use partition by to perform ranking within partitions of data

Example:

• Multiple rank clauses can occurs in a single select clause

• Ranking is done after applying group by clause or aggregation

• Ranking can be used to find top n results

– e.g. find the top 5 ranking students based on GPA
1 select *
2 from (select ID, rank() over (order by (GPA) desc) as s_rank
3 from student_grades)
4 where s_rank <= 5

– More general than limit n clause, since it allows top n within each partition

69

Windowing

Compute an aggregation function over a range of tuples

Examples:

Recursion

We perform recursion in SQL in a simular way to regular programming:

• Fixed point: there is no further changes in the result of the recursive query evaluation

• Reaching the fixed point indicates we can terminate the recursive query

70

Example: union our current query with the past one until union no longer adds anything

Example: remove courses we have already found

Data Modeling

The goal is to be able to convert a written specification into a database schema

• Step 1: understand the real-world domain being modeled

– Specify these considerations into an entity-relationshiop (E-R) model

• Step 2: translate this into the data model of the DBMS

– Create the relational model

71

There are two major pitfalls that should be avoided

• Redundancy: storing multiple copies of the same data

– Inconsistencies will occur if all the copies of the data is not updated at the same time

• Incompleteness: unable to store all valid data

– We want our database to be complete with all the data it should have

Entity-Relationship Model (E-R Model)

E-R diagrams were proposed to help with designing database schema and described the world in terms of:

• Entities

• Relationships

• Attributes on entities and relationships

Entity Set

• Entity : is an object that exists and is distinquishable from other objects (an instance)

• Entity set : set of entities of the same type that share the same properties (or attributes)

• An entity is represented its attributes which are properties all members of the entity set possess

• Subset of the attributes form a primary key of the entity set

An entity set is represented using:

• Each rectangle is its own entity set

• Attributes are listed inside the rectangle

• Underline indicates the primary key attributes

Example:

A specific entity of the instructor entity set could be (ID: 1, name: Joe, salary: $8)

72

Relationship Set

• Relationship: an association among multiple entities

• Relationship Set : mathematical irelation among n ≥ 2 entities

– Let E1, . . . , En be entity sets, then a relationship set is a subset of

{(e1, . . . , en) : e1 ∈ E1, . . . , en ∈ En}

where (e1, . . . , en) is a relationship instance

Diamonds are used to represent the relationship set and an attribute can also be associated.

Examples:

• Relationship set advisor denotes associations between students and instructors

– In E-R notation the relationship set is denoted:

• Relationship set advisor can have an attribute

– In E-R notation the relationship set is denoted:

73

Roles

An entity set may participate more than once in a relationship set

• Each occurrence fo an entity set plays a role in the relationship

Example: the labels course_id and prereq_id are called roles

Relationship Set Degree

• Binary Relationship:

– Involves exactly two entity sets (degree two)

– Most relationship sets in a database system are binary

• Non-binary Relationship:

– On occasion it is more convenient to represent relationships as non-binary

– e.g. students work on research projects under the guidance of an instructor

proj_guide is a ternary relationship (degree three) between instructor, student, and project

74

Attributes

The types of attributes:

• simple and composite attributes

– Whether the attribute can be divided into other attributes

– e.g. address is a composite attribute because it could consist of the attributes street, city, state,
and postal code

• single-valued and multivalued attributes

– e.g. if an instructor can be multiple phone numbers then phone_numbers is a multivalued
attribute

• derived attributes

– Attributes that can be computed from other attributes

– e.g. age attribute can be derivated when required from date_of_birth

Example:

Mapping Cardinality Constraints

Express the number of entities that can be assocated from one set to another via a relationship set.

For binary relationship sets we have the mapping cardinality can be:

75

Note: some elements in A or B could be not mapped to any elements in other set

Example: in E-R notation

• Arrow: at most one entity from this entity set in the relationship

• Line: any number of entities from this entity set in the relationship

Total and Partial Participation

• Total participation (double line)

– Every entity in this entity set must participate in at least one relationship

• Partial participation (single line)

– Some entities may not participate in any relationship in the relationship set

Example:

• Every student must ahve an associated instructor (participation of student in advisor is total)

• Some instructors may not advise students (participation of instructor in advisor is partial)

76

General Cardinality Constraints

We denote a general cardinality constraint as: ℓ...h

• This denotes the minimum ℓ and maximum h number of relationships a entity participates in

– ℓ = 0: partial participation

– ℓ = 1: total participation

– h = 1: at most one relationship

– h = ∗: not limit of relationships

Example:

• An instructor can advise zero or more students

• Each student must have exactly one advisor

Primary Keys

• Primary key for entity sets is a set of attributes that suffice to distinguish entities from each other

• Primary key for binary relationship depends on the mapping cardinality of relationship set

– one-to-one: primary key of either one of the participating entity sets

– one-to-many or many-to-one: primary key of the many side

– many-to-many: union of primary keys of the participating entity sets

Example:

77

Weak Entity Sets and Identifying Relationships

Definition: a weak entity set is an entity set whose existence is dependent on some entity called its
identifying entity (an entity set that is not a weak entity set is called a strong entity set).

Example: course is the identifying entity of the section weak entity set:

The identifying relationship associates the weak entity set with its identifying entity set

• Identifying relationship is a many-to-one from the weak entity set to the identify entity set

• Participation of the weak entity set in the identifying relationship is total

• Identifying relationship set should not have any attributes

– Instead the attributes should be associated with the weak entity set

Example: E-R diagram of a weak entity set (double outline for identifying relation and weak entity set)

The attribute course_id is not stored in the section but is provided by sec_course

Redundant Attributes in Entity Sets

General steps to design an E-R diagram:

1. Identify entity sets

2. Add attributes to entity sets

3. Form relationship sets between the various entity sets

4. Remove redundant attributes from entity sets

Example:

1. Identify entity sets: instructor and department

2. Added attributes:

78

• instructor : ID, name, dept_name, salary

• department : dept_name, building, budget

3. Formed relationship: inst_dept relating instructor and department

4. The attribute dept_name in instructor is redundant due to the stud_dept relationship so we would
remove it to get the entity sets:

• instructor : ID, name, salary

• department : dept_name, building, budget

Due to the relationship this is basically the same as before.

Specialization and Generalization

• Specialization: general groups into more specific groups

– Create general purpose entity sets, then provide specializations of them

• Generalization: specific groups into more general groups

– Begin with specific entities, then find common attributes and generalize them

Example: a university employee could be either a instructor or a secretary

• Instructors and secretaries both have: ID, name, street, city, salary

• Instructors also have: rank (e.g. associate, full, etc)

• Secretaries also have: hours_per_week

• Superclass: the higher-level entity sets used to represent common attributes

• Subclass: lower-level entity sets used to represent specialized attributes

• Superclass is connected to subclasses using a hollow-headed arrow

• Lower-level entity sets inherit attributes and relationships of higher-level entity sets

Specialization constraints:

• Disjoin specialization: entity can be member of at most one lower-level entity sets

• Overlapping specialization: entity can be member of many lower-level entity sets

79

Example: if one hollow arrow has many lower-level entity sets then the specialization is disjoint

Completeness constraints:

• Total specialization:

– Every higher-level entity must be a member of at least one lower-level entity set

– e.g. a person must be either an employee or a student (not allowed to be neither)

• Partial specialization:

– Every higher-level entity is not required to a member of some lower-level entity set (default)

– e.g. not every employee is an instructor or a secretary (allowed to be neither)

Example: total specialization constraint is added by annotating specialization arrow(s)

80

Aggregation

Relationships can be viewed as a higher-level entity set

• Expressing an relationship where another relationship acts as a component entity set

Example: each instructor guiding a studnet on a project is required to fill a monthly evaluation report

Entity-Relationship Design Issues

• Common mistake 1:

– Using a primary key of an entity set as an attribute of another entity set, instead of using a
relationship

– attribute dept_name is redundant in student

• Common mistake 2:

– Using a relationship with a single-valued attribute when we require a multivalued attribute

– In the given E-R diagram each student-section pair can only have one assignement

– The corrected version allows for a section to have multiple assignments:

81

• Common mistake 3:

– Using the primary-key attributes of the related entity sets as attributes of the relationship set

– The corrected version could be either of the following two:

Entity Set vs Relationship Set

It is not always clear when an object is best expressed by an entity set or a relationship set.

• One guideline is thinking about whether it describes an action that occurs between two entities

Example: takes can be viewed as either a relationship set or entity set

E-R Diagrams Summary

To create an E-R diagram we have 6 steps

1. Recognize entity sets

2. Recognize relationship sets and participating entity sets

3. Recognize attributes of entity and relationship sets

4. Define relationship types and existence dependencies

5. Define general cardinality constraints, keys, and discriminators

82

6. Draw diagram

For each step, maintain a log of assumptions motivating the choices and of restrictions imposed.

Example: a bookstore’s system

• Each book in this system has a unique ISBN in addition to the attributes name, genre, the number
of pages, and the number of copies in the bookstore.

• Each book is written by one or more authors and published by a publisher.

• Authors have unique author ID, name, nationality, and birth year. An author can write more than
one book.

• Each publisher is identified by a publisher ID, and also has name and address. Some publishers can
be owned by another publisher. And, a publisher can own more than one publisher.

• Each customer has unique customer ID, name, and phone number. Customers may have customer
cards, each card having a card ID and points attributes. Customer cards cannot be identified
uniquely and they can exist in the system only with customers.

• Each sale in the bookstore is made by a customer, and identified by a sale ID, and also has the date
and total price. Each sale is associated with one or more books, specifying the number of copies sold
for each book.

83

E-R Diagram to Relational Tables

Intuitively, we perform the following translation:

• Each entity set maps to a new table

• Each relationship set maps to a new table

• Each simple and single-valued attribute maps to a new table column

Representation of Strong Entity Sets

Method: the entity set E with attributes a1, . . . , an translates to table E with attributes a1, . . . , an

• Entities of E correspond to rows in table E

• Primary key of an entity set is the primary key of the table

Example:

For complex attributes:

• Composite attributes are flattened out by creating a separate attribute for each component

• Multivalued attribute M of an entity E is represnted by a separate table EM consisting of the
primary key A of E and M , then foreign key constraint of EM.A references E.A is added to EM

Example:

The derived attributes (e.g. age()) are represented as stored procedures or functions

84

Representation of Relationship Sets

Method: A many-to-many relationship set R translates to table R

• Columns of table R should include:

– Primary keys of the two participating entity sets

– Descriptive attributes of the relationship set R

• Primary key and foreign key constraints:

– PK: primary keys of table R is the primary keys of relationship set R

∗ primary keys of the two participating entity sets

– FK: 2 foreign key constraints referencing the primary keys of the 2 participating entity sets

Example:

Method: many-to-one or one-to-many relationship sets are represented through adding the primary key
A of the one side to the many side

• If participation is total on the many then the added attribute(s) A is not null

• Foreign key constraint: added attribute(s) A of many side references primary key A of one side

Example:

85

Representation of Weak Entity and Relationship Sets

Method: the weak entity set WE translates to table WE

• Columns of table WE should include:

– All attributes of the weak entity set

– Primary key A of the identifying (strong) entity set SE

• Primary key and foreign key constraints:

– PK: discriminator attributes of WE plus primary key A of identifying entity set SE

– FK: WE.A references SE.A

Example:

Note: the identifying relationship for a weak entity does not require any translation
(i.e. sec_course does not need any translation)

Representation of Specialization and Generalization

Higher-level entity set:

• Person with attributes ID, name, street, and city

Lower-level entity set:

• Person can be an employee with additional attribute salary

• Person can be student with addition attribute tot_credits

Then the specialization is represented by the following tables:

• Person(ID, name, street, city)

• Employee(ID, salary)

• Student(ID, tot_cred)

86

Key constraints:

• FK: Employee.ID references Person.ID

• FK: Student.ID references Person.ID

If the speicalization is disjoint and total then the tables would be

• Person(ID, name, street, city, salary)

• Student(ID, name, street city, tot_cred)

Aggregation

Method: treat the aggregation like an entity set whose primary key is the primary key of the aggregated
relationship set

Example:

Function Dependencies (FD)

Definition: let R be a relational schema and X,Y ⊆ R be a set of attributes. The functional dependency

X → Y

holds on R if whenever an instance of R contains two tuples t and u such that t[X] = u[X] then t[Y] = u[Y].

• We say that that X functionally determines Y in R

• Note both t.X and t[X] hold the same meaning

t[A1, . . . , Ak] is a projection of r onto attributes A1, . . . , Ak i.e. the tuple (t.A1, . . . , t.Ak)

87

Example: for the relational schema EmpProj(SIN, PNum, Hours, EName, PLoc, Allowance)

• If SIN determines employee name then: SIN → EName

• If project number determines project name and location then: PNum → PName,PLoc

• If allowance is the same for number of hours at the same location: PLoc, Hours → Allowance

• Trivial FD: SIN, EName → EName

Functional Dependencies and Keys

Recall the defined keys:

• superkey : set of attributes such that no two tuples have the same values for the attributes

• candidate key : minimal superkey

• primary key : candidate key chosen by the database designer

Functional dependencies and keys:

• If K ⊆ R is a superkey for R then dependency K → R holds on R

• If dependency K → R holds on R then K ⊆ R is a superkey for relation schema R

– Needs assumption that R does not contain duplicate tuples

Functional Dependencies Implication

Armstrong’s Axioms:

• Reflexivity :
X ⊆ X =⇒ X → Y

• Augmentation:
X → Y =⇒ XZ → Y Z

• Transitivit :
X → Y, Y → Z =⇒ X → Z

These axioms are:

• Sound (anything derived from F is in F+)

• Complete (anything in F+ can be derived from F)

Additional rules can also be derived:

• Union:
X → Y, X → Z =⇒ X → Y Z

• Decomposition:
X → Y Z =⇒ X → Y, X → Z

88

Example: prove SIN, PNum → Allowance using the following set of FDs

F = {SIN, PNum → Hours
SIN → EName
PNum → PName, PLoc
PLoc, Hours → Allowance}

1. SIN, PNum → Hours (∈ F)

2. PNum → PName, PLoc (∈ F)

3. PLoc, Hours → Allowance (∈ F)

4. SIN, PNum → PNum (reflexivity)

5. SIN, PNum → PName, PLoc (transitivity, 4 and 2)

6. SIN, PNum → PLoc (decomposition, 5)

7. SIN, PNum → PLoc, Hours (union, 6 and 1)

8. SIN, PNum → Allowance (transitivity, 7 and 3)

Functional Dependencies Attribute Closure

Definition: closure Z+ of attributes Z in the relation R with respect to the set of FDs F is the set of all
attributes {A1, . . . , At} functionally determined by Z (i.e. Z → A1 · · ·At)

Algorithm to compute the closure: ComputeZ+(Z,F):

• Start by setting Z+ ← Z

• If X ∈ Z+ and X → Y ∈ F then update Z+ ← Z+ ∪ Y

• Repeat until no new attributes can be added

Example: ComputeZ+({PNum,Hours},F) with

F = {SIN → EName
PNum → PName, PLoc
PLoc, Hours → Allowance}

• {PNum, Hours}

• {PNum, Hours, PName, PLoc} (PNum → PName, PLoc)

• {PNum, Hours, PName, PLoc, Allowance} (PLoc, Hours → Allowance)

Given a relation R and set of FDs F we ComputeX+(X,F)

• Y ⊆ X+ ⇐⇒ X → Y ∈ F

• R ⊆ X+ ⇐⇒ X is a superkey

– To verify that X is a minimal superkey we need to check attribute closure of its proper subset

89

Schema Refinement

After designing a E-R diagram and converting that into a relational schema we need to determine that
schema has any issues.

A good relational database schema should have independent facts in separate tables:

“Each relation schema should consist of a primary key
and set of mutually independent attributes”

This is achieved by transforming a schema into a normal form.

Lossless-Join Decomposition

Definition (Schema Decomposition): Let R be a relation schema (set of attributes). The collection
{R1, . . . , Rn} of relation schemas is a decomposition of R if

R = R1 ∪ · · · ∪Rn

Example: consider the following decomposing of Marks into SGM and AM

While this is a valid decomposition notice that the natural join of SGM and AM has spurious tuples:

We are therefore losing information if we replace Marks with SGM and AM (lossy decomposition)

Definition (Lossless Decomposition): A decomposition {R1, R2} of R is lossless if and only if the common
attributes of R1 and R2 form a superkey for either schema

R1 ∩R2 → R1 or R1 ∩R2 → R2

(also called a lossless-join decomposition)

Example: we can losslessly decompose R into R1, R2, R3

90

Dependency Preservation

Definition (Dependency-Preserving Decomposition): Given a schema R and a set of functional depen-
dencies F , a decomposition:

D = {R1, . . . , Rn}

of R is dependency preserving if there is an equivalent set of functional dependencies F ′, none of which is
interrelational in D.

Example: a table for a company database could be

We are given two decompositions:

• D1 = {R1{Proj, Dept}, R2{Dept, Div}}

• D2 = {R1{Proj, Dept}, R3{Proj, Div}}

Of these two decompositions they are both lossless but it is actually D1 that is better

• D1 lets us test FD1 on table R1 and FD2 on table R2. If both are satisfied then FD3 is satisfied

• D2 lets us test FD1 on table R1 and FD3 on table R3. However FD2 is an interrelational constraint
as testing it requires joining tables R1 and R3

Boyce-Codd Normal Form (BCNF)

Definition (BCNF Informal): relation schema R is in BCNF if and only if any group of attributes in R
that functionally determines any other attributes in R, functionally determines all attributes in R.

Schema R is in BCNF (w.r.t. F) if and only if whenever (X → Y) ∈ F+ and XY ⊆ R then either

• (X → Y) is trivial (i.e. Y ⊆ X), or

• X is a superkey of R

Database schema {R1, . . . , Rn} is in BCNF if each relation schema Ri is in BCNF.

To convert to BCNF:

• Find a BCNF violation: non-trivial FD X → Y in F∗ of R where X is not a super key of R

• Decompose R into R1 and R2 where

R1 = X ∪ Y and R2 = X ∪ Z

where Z contains all attributes of R that are neither in X nor Y

• Repeat until there are no more BCNF violations

91

Example:

BCNF guarantees:

• Lossless join decomposition

• No redundancy

Not necessarily dependency preserving. Take R = {A,B,C} and F = {AB → C, C → B}

Notice that AB → C is interrelational and cannot be tested directly.

3NF produces lossless join decomposition and is dependency preserving, but may have redundancy.

Third Normal Form (3NF)

Definition: schema R is in 3NF (w.r.t. F) if and only if whenever (X → Y) ∈ F+ and XY ⊆ R then

• (X → Y) is trivial (i.e. Y ⊆ X), or

• X is a superkey of R, or

• each attribute in Y −X is part of a candidate key of R

Database schema {R1, . . . , Rn} is in 3NF if each relation schema Ri is in 3NF.

The first two conditions are the same as BCNF while the third condition is new (3NF is looser than BCNF)

To convert to 3NF:

• Initialize the decomposition with an empty set

• Find a minimal cover for F , let it be F ∗

• For every (X → Y) ∈ F ∗, add relation {XY } to the decomposition

92

• If no relaion contains a candidate key for R, then compute a candidate key K for R and add {K}
to the decomposition

Example:

• R = {Sno, Sname, City, Pno, Pname, Price}

• Functional dependencies:

Sno → Sname, City Pno → Pname

Sno, Pno → Price Sno, Pname → Price

• Minimal cover:

Sno → Sname R1 = {Sno, Sname}

Sno → City R2 = {Sno, City}

Pno → Pname R3 = {Pno, Pname}

Sno, Pname → Price R4 = {Sno, Pname, Price}

• Add relation for candidate key R5 = {Sno, Pno}

Minimal Cover

Definition: a set of dependencies F is minimal if

• Every right-hand side of an dependency in F is a single attribute

• There does not exist X → A in F , such that the set

F − {X → A}

is equivalent to F (no redundant FD in F)

• There does not exist X → A and Z ⊂ X, such that set

(F − {X → A}) ∪ {Z → A}

is equivalent to F (no extra attributes on left hand side of FD in F)

To compute the minimal cover for F we have three steps (repeat each step until F is no longer updated)

• Replace X → Y Z with X → Y and X → Z

• Remove X → A from F if A ∈ ComputeX+(X,F − {X → A})

• Remove A from left hand size of X → B in F if B ∈ ComputeX+(X − {A}, F)

93

Example: R = {Sno, Sname, City, Pno, Pname, Price, Ptype} F includes

FD1: Sno → Sname, City

FD2: Pno → Pname
FD3: Sno, Pno → Price

FD4: Sno, Pname → Price

FD5: Pno, Pname → Pty

• Fail condition 1: FD1

• Fail condition 2: FD2 and FD4 implies FD3 (remove FD3)

• Fail condition 3: FD5 can be replaced by FD5′ Pno→ Ptype

Then the minimum cover is:

Sno → Sname
Sno → City

Pno → Pname
Sno, Pname → Price

Pno → Pty

Transactions

Concurrency and Power Failure

The database is a shared resource that the accessed by many users and processes concurrently.

Due to the database being a shared resource there can be problems due to concurrency or power failure.

Problems caused by concurrency :

• Inconsistent reads: if two applications read and write concurrently then it is possible to read halfway
through an update operation

• Lost updates: if two applications write to the time place concurrently then it is possible to lose one
of the updates

• Non-repeatable reads: if two applications read and write concurrently then it is possible to read same
updated values and some old values

Overall we run into concurrently problems when between two applications:

• one reads and another writes to the database

• both write to the database

Don’t need to worry about when two applications only read from the database.

Problems caused by failure:

• If system crashes while processing update then only some tuples are updated, but not all

• If system crashes after update but before the they are made permanent (e.g. written to disk) then
the changes may not survive

94

• If system fails between two updates, then only one may complete while the other disappears

We need to worry about partial results of application on the database when a crash occurs

Need to make sure that when applications are completed the changes to the database can survive crashes.

SQL Transaction

A transaction is automatically started when a user executes a SQL statement:

• Subsequent statements in the same session are executed as part of the same transaction

• Statements see changes made by earlier ones in the same transaction

• Statements in other concurrently running transactions do not

There are two SQL commands to terminate a transaction:

• commit : make its effects final and visible to subsequent transactions

• rollback : abort the transaction by undoing its effects

A new transaction then begins with the application’s next SQL command after the commit or rollback.

The fine print:

• Performing any schema operation (e.g. create table) will commit the current transaction

– schema is usually fixed and it is extremely difficult to undo a schema operation

• Most DBMS support an autocommit feature, which automatically commits every single statement

– can be turned off/on through the API (but may be on by default)

• Statements can be enclosed with begin transaction and commit transaction to explicitly specify
a transaction

ACID

A transaction is a sequence of database operations that is ACID:

• Atomic: operations of this transaction are exected all-or-nothing (never half done)

– Achieved using logging (to support undo)

• Consistency : assume all database constraints are satisfied at start of transaction and are satisfied
at the end of the transaction

– Onus on the user to define that is consistent

– If inconsistency does arise either abort or attempt to fix before commit

• Isolation: transactions must behave as if they are exected in complete isolation from each other

– Achieved using locking, multi-version concurreny control, etc.

– DBMS executes transaction using a serializable schedule for extra performance

∗ Operations from different transaction can interweave and execute concurrently

∗ However schedule guarantees the same effects as if transactions where executed serially

95

• Durability : if the DBMS crashes after a transaction commits, all effects of the transaction must
remain in the database when the DBMS comes back up

– Achieved using logging (to support redo)

We will not study these in detail but they will be fully covered in CS448

Constraint Conflicts in SQLite

SQLite has on conflict which is a non-standard clause that allows us to specify how to handle constraint
conflicts:

• Can be applied to constraints: unique, non-null, check, primary key (but not foreign key)

• Options for actions to perform when constraint violation occurs: abort, fail, ignore, replace, rollback

Example: the following produces the same results

Examples:

• ignore: skips the row that violates the constraint, and continues processing subsequent rows

96

• fail: aborts the current SQL statement with an error

– Does not undo prior change of the statement that failed

– Does not end the transaction

• abort: (the default option) aborts the current SQL with an error

– Undo the statement that failed but keeps the statements before

– Does not end the transaction

97

• replace:

– unique or primary key: delete pre-existing rows causing the violation (before the current row)
then continue continue normally

– not null: replace null values with the default one (if no default value then abort)

– check: does same as abort

• rollback: aborts current SQL statement with an error then rolls back the current transaction

98

	Database Management
	Data Storage
	File System
	Database

	Brief History of Data Management
	Database Management System (DBMS)
	Three Level Schema Architecture
	Data Independence
	Interfacing to the DBMS
	Transactions
	Types of Database Users

	The Relational Model of Data
	Definition of the Relational Model
	Properites of the Relational Model
	Integrity Contraints

	The Relational Algebra
	Selection
	Projection
	Cross Product
	Conditional Join
	Natural Join
	Rename
	Set-Based Relational Operators
	Relational Division
	Algebraic Equivalences
	Relational Completeness

	Structured Query Language (SQL)
	Tables
	SQL DDL: Data Types
	Create Table

	Basic Structure of SQL Queries
	select Clause
	where Clause
	from Clause
	inner join Clause
	natural join Clause
	Basic Query Strucutre

	Additional Basic Operations
	as Clause
	String Operations
	like Operation
	between Operation
	Tuple Comparision
	Ordering Operations

	Set Operations
	Aggregate Functions
	group by Clause
	having Clause

	Unknown Values
	Null Values
	Three-Valued Logic

	Joins
	Outer Joins
	Join Expressions
	using Clause
	Natural Join Pitfalls

	Subqueries
	Nested Subqueries
	Scalar Subqueries
	Set Membership
	Set Comparison
	Empty Relations Testing
	Duplicate Tuples Testing
	Correlated Subqueries
	with Clause

	Data Modification
	Updating Table Schema
	Deletion
	Insertion
	Update

	Integrity Constraints
	not null Constraint
	primary key Constraint
	unique Constraint
	check Constraint
	foreign key Constraint
	Foreign Key Constraint Enforcement
	Deferred Constraint Checking

	Views
	Updating Views

	Access Control
	Granting and Revoking Privileges
	Roles
	Transfer of Privileges

	Indexes
	SQL from a Programming Language
	JDBC
	Prepared Statements
	Metadata Features

	Functions and Procedures
	Triggers
	Trigger Events
	Granularity

	Advanced Aggregations
	Ranking
	Windowing

	Recursion

	Data Modeling
	Entity-Relationship Model (E-R Model)
	Entity Set
	Relationship Set
	Roles
	Relationship Set Degree
	Attributes
	Mapping Cardinality Constraints
	Total and Partial Participation
	General Cardinality Constraints
	Primary Keys
	Weak Entity Sets and Identifying Relationships
	Redundant Attributes in Entity Sets
	Specialization and Generalization
	Aggregation
	Entity-Relationship Design Issues
	Entity Set vs Relationship Set
	E-R Diagrams Summary

	E-R Diagram to Relational Tables
	Representation of Strong Entity Sets
	Representation of Relationship Sets
	Representation of Weak Entity and Relationship Sets
	Representation of Specialization and Generalization
	Aggregation

	Function Dependencies (FD)
	Functional Dependencies and Keys
	Functional Dependencies Implication
	Functional Dependencies Attribute Closure

	Schema Refinement
	Lossless-Join Decomposition
	Dependency Preservation
	Boyce-Codd Normal Form (BCNF)
	Third Normal Form (3NF)
	Minimal Cover

	Transactions
	Concurrency and Power Failure
	SQL Transaction
	ACID
	Constraint Conflicts in SQLite

