CS 348: Introduction to Database Management University of Waterloo Instructor: Chao Zhang Winter 2023

Andrew Wang

Table of Contents

Database Management	5
Data Storage	
File System	
Database	6
Brief History of Data Management	
Database Management System (DBMS)	
Three Level Schema Architecture	
Data Independence	
Interfacing to the DBMS	7
Transactions	
Types of Database Users	
The Relational Model of Data	
Definition of the Belational Model	10
Proparities of the Relational Model	11
Integrity Contraints	
The Deletional Algebra	IZ
Selection	
Projection	
Cross Product	
Conditional Join	
Natural Join	
Rename	
Set-Based Relational Operators	
Relational Division	
Algebraic Equivalences	
Relational Completeness	
Structured Querry Language (SQL)	20
Tables	20
SOL DDL Data Trans	
Create Table	
Basic Structure of SQL Queries	
select Clause	
where Clause	
from Clause	
inner join Clause	
natural join Clause	
Basic Query Strucutre	
Additional Basic Operations	
as Clause	
String Operations	
like Operation	
between Operation	
Tuple Comparision	
Ordering Operations	
Set Operations	
Aggregate Functions	32
group by Clause	

having Clause	35
Unknown Values	36
Null Values	36
Three-Valued Logic	36
Joins	36
Outer Joins	36
Join Expressions	38
using Clause	39
Natural Join Pitfalls	39
Subqueries	40
Nested Subqueries	40
Scalar Subqueries	41
Set Membership	41
Set Comparison	42
Empty Relations Testing	44
Duplicate Tuples Testing	45
Correlated Subqueries	47
with Clause	48
Data Modification	48
Updating Table Schema	48
Deletion	49
Insertion	49
Update	50
Integrity Constraints	51
not null Constraint	51
primary key Constraint	52
unique Constraint	52
check Constraint	53
foreign key Constraint	53
Foreign Key Constraint Enforcement	54
Deferred Constraint Checking	57
Views	57
Updating Views	58
Access Control	59
Granting and Revoking Privileges	59
Roles	59
Transfer of Privileges	60
Indexes	60
SQL from a Programming Language	61
JDBC	63
Prepared Statements	64
Metadata Features	64
Functions and Procedures	64
Triggers	67
Trigger Events	67
Granularity	68
Advanced Aggregations	68
Ranking	68
Windowing	70
Recursion	70

Data Modeling	71
Entity-Relationship Model (E-R Model)	72
Entity Set	72
Relationship Set	73
Roles	74
Relationship Set Degree	74
Attributes	75
Mapping Cardinality Constraints	75
Total and Partial Participation	76
General Cardinality Constraints	77
Primary Keys	77
Weak Entity Sets and Identifying Relationships	78
Redundant Attributes in Entity Sets	78
Specialization and Generalization	79
Aggregation	81
Entity-Relationship Design Issues	81
Entity Set vs Relationship Set	82
E-R Diagrams Summary	82
E-R Diagram to Relational Tables	84
Representation of Strong Entity Sets	84
Representation of Relationship Sets	85
Representation of Weak Entity and Relationship Sets	86
Representation of Specialization and Generalization	86
Aggregation	87
$Function Dependencies (FD) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	87
Functional Dependencies and Keys	88
Functional Dependencies Implication	88
Functional Dependencies Attribute Closure	89
Schema Refinement	90
Lossless-Join Decomposition	90
Dependency Preservation	91
Boyce-Codd Normal Form (BCNF)	91
Third Normal Form $(3NF)$	92
Minimal Cover	93
Transactions	94
Concurrency and Power Failure	94
SQL Transaction	95
ACID	95
Constraint Conflicts in SQLite	96

Database Management

This course will study data databases from three viewpoints: *database user*, *database designer*, and the *database manager*. It will teach how to use the database management system (DBMS) but treat it like a black box, focusing on its functionality and interfaces. (CS448 database system implementation)

Formal definition of *data* given by ANSI:

- Representation of *facts*, *concepts*, or *instructions* in a formal manner suitable for communication, intrepretation, or processing by humans or computers
- Any representation such as characters or analog quantities to which *meaning is or might be assigned*. Generally, we perform operations on data or data items to supply some information about an entity

Informally, we say data is any information that needs to be recorded in an application.

We primarily concern ourselves with *persistent* data (data that should not be lost with power outages) (*volatile* data is lost after a power cycle).

Example: a bank account

- Data: bank account belongs to a branch, have a number, owner, balance, etc.
- Persistency: balance can't disappear after power outage
- Query: what is the balance in Bob's account?
- Modification: Bob withdraws \$100

Data Storage

File System

Before databases we had a file processing system, where the data is updated in manually by the program (i.e. write/read directly from some location)

Disadvantages of file processing systems:

- Data redundancy and inconsistencies: having multiple copies of the same data leads to higher storage and inconsistencies could occur when only one copy is updated
- Difficulty in accessing or modifying data: new requests for accessing or modifying data requires writing a new application
- Integrity problems: to add constraints to restrict data entry requires changing the program

- Atomicity problems: difficult to return to state before a power failure (because it is difficult to ensure program parts are *atomic*)
- Concurrent-access anomalies: difficult to support multiple access and update to data
- Security and access control: difficult to control user access to data

Database

Instead of solving these problems anew, we can use a DBMS to handle it (*data independence*).

- **Database**: A *large* and *persistent* collection of (more-or-less similar) pieces of information organized in a way that facilitates efficient *retrieval* and *modification*
- Database Management System (DBMS): A program (or set of programs) that manages details related to database storage and access for a database

DBMS Ideas (*integrated control*):

- Data Model: all data is organized in a well defined way
- Access Control: only authorized people are able to view/modify data
- Concurrency: multiple concurrent application and access/update data
- Database recovery: database can be rolled back so nothing is accidentally lost

Schema and Instance:

- Schema: A description of the data inferface to the database (i.e. how data is organized)
- Database Instance: A database (real data) that conforms to the given schema

Schema is like a class definition while the *instance* is an object created from that class.

Example: from the *schema* PROJ(PNO, PNAME, BUDGET) an possible *instance* could be:

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000

Brief History of Data Management

slides 13/27 to 16/27 and slides 24/27 to 26/27 maybe move to after next subsection?

Database Management System (DBMS)

Three Level Schema Architecture

- External schema (view): what the applications and user sees (may differ for different users)
- Conceptual schema: description of the logical structure of all data in the database (logical schema)
- **Physical schema**: description of physical aspects of how the data is stored (e.g. storage format, low-level data structures, etc)

Data Independence

Applications do not access data directly but instead use an abstract data model provided by the DBMS.

There are two kinds of data independence:

- Logical: users of the external schema do not need to be aware of all the information at the logical schema level
- **Physical**: users of the logical level and the external schema do not need to be aware of the complexity of physical-level structure

Interfacing to the DBMS

Data Definition Lanuage (DDL): used to specify schemas

• Example: table for department can contain: dept name, building, and budget with each column being associated with a specific data type

Data Manipulation Language (DML): used for specifying queries and updates

- Procedural DML: requires user to specify what data is needed and how to get data
- **Declarative DML**: require user to just specify what data is needed
- Example: find instructor ID and dept name of all instructors with budget of more than \$95,000

Transactions

Definition: A transaction is a unit of program execution that accesses and possibly updates data items.

Example: two transactions are made at the same time for the same account, if it is not handled properly the full \$1500 will not be deducted.

1	Transaction T1	1	Transaction T2
2		2	
3	withdraw(AC,1000)	3	withdraw(AC,500)
4	Bal := getbal(AC)	4	Bal := getbal(AC)
5		5	
6	if (Bal > 1000)	6	if (Bal > 500)
7	<give-money></give-money>	7	<give-money></give-money>
8	setbal(AC, Bal - 1000)	8	setbal(AC, Bal - 500)
9		9	

DBMS ensures that every application can think it is the sole application accessing the data at that time.

ACID properties of the transactions ensured by the DBMS:

- Atomic: transactions occurs entirely, or not at all
- **Consistency**: each transaction preserves the consistency of the database
- Isolated: concurrent transactions do not interfere with each other
- Durable: once completed, transaction's changes are permanent

Types of Database Users

- End user:
 - Accesses the database indirectly through forms or other query-generating applications
 - Generates ad-hoc queries using the DML
- Application developer:
 - Designs and implements applications that access the database
- Database administrator (DBA):
 - Manages conceptual schema and assists with application view integration
 - Monitors and tunes DBMS performance
 - Defines internal schema
 - Is responsible for security and reliability

The Relational Model of Data

A data model specifies:

- the structure of the database (e.g. relations or tables)
- the operations for manipulating the data using that structure (e.g. relational algebra)
- a set of contraints that the database should obey (e.g. integrity constraints)

What we expect from a data model:

- Simplicity
- Ability to support data independence
- Declarative language support

The idea of the **Relational Model** is that all information is organized in relations (or tables). Features:

- simple and clean data model
- powerful and *declarative* query/update language
- semantic integrity constraints
- data independence

				attributes
				(or columns)
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	tuples
12121	Wu	Finance	90000	(or rows)
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

Example of a Instructor Relation

Note: the order of the tuples is irrelevant (tuples may be stored in an arbitrary order)

Definition of the Relational Model

Informal Definition of the Relational Model:

- Database is a collection of *relations* (or *tables*)
- Each relation has a set of *attributes* (or *columns*)
- Each attribute has a name and a *domain* (or *type*)
 - The domain elements are required to be *atomic* (*indivisible*)
- Each relation contains a set of *tuples* (or *rows*)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed (two tuples with all same attributes)

Formal Definition of the Relational Model:

- **Domain**: set of allowed values of each attribute, denoted by dom(D), where D is the domain name
- Relation:
 - relation schema: $R(A_1: D_1, \ldots, A_k: D_k)$ with
 - * name R
 - * A_1, \ldots, A_k is the set of distinct *attribute* names
 - * D_1, \ldots, D_k is a collection of (not necessarily distinct) domain names
 - relation instance: a finite relation
- Database:
 - database schema: finite set of uniquely-named relation schemas
 - database instance: a relation instance \mathbf{R}_i for each relation schema R_i

Example: Bibliography Database

• Database schema:

```
1 author(aid:int, name:string)
2 wrote(author:int, publication:int)
3 publication(pubid:int, title:string)
4 book(pubid, publisher, year)
5 journal(pubid, volume, no, year)
```

```
6 proceedings(pubid, year)
```

7 article(pubid, crossref, startpage, endpage)

Note: relation schemas are sometimes abbreviated by omitting the attribute domains

• Sample database instance (tabular form on right):

					auth	or	wrote	
author	=	ł	(1. John), (2. Sue)	3	aid	name	author	publication
	_	ſ	(1, 1) $(1, 4)$ $(2, 2)$	ן ר	1	John	1	1
wrote	-	ί	(1, 1), (1, 4), (2, 3)	3	2	Sue	1	4
publication	=	{	(1, Mathematical Logic),				2	3
			(3, Trans. Databases),					
			(2, Principles of DB Syst.),			public	ation	
			(4, Query Languages)	}		pubid	tit	le
book	=	{	(1, AMS, 1990)	}		1	Mathemat	ical Logic
journal	=	{	(3, 35, 1, 1990)	}		3	Trans. D	atabases
proceedings	_	ſ	(2 1995)	1		2	Principles of	of DB Syst.
proceedings		ί c		1		4	Query La	inguages
article	=	{	(4, 2, 30, 41)	}	l		- •	

Properites of the Relational Model

Note:

- Relational schemas have named and typed attributes
- Relational instances are finite

Properties of a relation:

- 1. Based on (finite) set theory
 - Instance as *set semantics*:
 - No ordering among tuples
 - No duplicate tuples
- 2. All attribute values are atomic
- 3. Degree (arity) = # of attributes in schema
- 4. Cardinality = # of tuples in instance

Note: The standard language for interfacing with relational DBMSs is Structured Query Language (SQL). Unfortunately, there is a important difference between the Relational Model and the data model used by SQL and relational RDBMSs.

The discrepancy between relations in Relational Model and tables in RDBMSs:

- Semantics of Instances
 - Relations are sets of tuples
 - Tables are multisets (bags) of tuples

By default, SQL tables can contain duplicate elements.

Integrity Contraints

A relational schema captures only the structure of relations

Idea: Extend relational/database schema with rules called constraints. An instance is only valid if it satisfies all schema constraints.

Reasons to use constraints:

- Ensure that data entry/modification repects database design (shift s responsibility from applications to DBMS)
- Protect data from bugs in applications

Types of Integrity Constraints:

- Tuple-level:
 - Domain restrictions: restricting the domain (or type) of each attribute
 - * e.g. if *student_id* is integer then string is invalid
 - Value comparisons: restricting the range of values of each attribute
 - * e.g. the only valid terms are {"Winter", "Summary", "Fall"}
- Relation-level: Key constraints
 - *Superkey*: set of attributes for which no pairs of distinct tuples in the relation will *ever* agree on the corresponding values
 - Candidate key: a minimal superkey (minimal set of attributes that uniquely identifies a tuple)
 - Primary key: a designated candidate key
 - Example:
 - * instructor(ID, name, dept_name, salary)

Both {*ID*} and {*ID*, *name*} are superkeys, but only {*ID*} is a condidate key

instructor					
ID	name	dept_name	salary		
22222	Einstein	Physics	95000		
12121	Wu	Finance	90000		
32343	El Said	History	60000		
45565	Katz	Comp. Sci.	75000		
98345	Kim	Elec. Eng.	80000		
76766	Crick	Biology	72000		
10101	Srinivasan	Comp. Sci.	65000		
58583	Califieri	History	62000		
83821	Brandt	Comp. Sci.	92000		
15151	Mozart	Music	40000		
33456	Gold	Physics	87000		
76543	Singh	Finance	80000		

- Database-level: Referential integrity
 - Foreign key: if primary key A of relation S appearing as attribute(s) B of relation R, then B is a foreign key from R, referencing S
 - * S is called a *referenced* relation and R is the *referencing* relation
 - Foreign key constraints: a tuple in R with a non-null value for foreign key B that does not match primary key value of a tuple in the *referenced* relation S is not allowed
 - *Referential integrity constraints*: extended foreign key constraint, where referenced attribute may not be a primary key

– Example:

- * instructor(ID, name, dept name, salary)
- * teaches(ID, course_id, sec_id, semester, year)
- * Foreign-key constraint: teaches.ID references instructor.ID

This means that on any database instance value of *ID* for each tuple in *teaches* must also be the value of a *ID* for some tuple in *instructor*.

instructor						
ID	name	dept_name	salary			
22222	Einstein	Physics	95000			
12121	Wu	Finance	90000			
32343	El Said	History	60000			
45565	Katz	Comp. Sci.	75000			
98345	Kim	Elec. Eng.	80000			
76766	Crick	Biology	72000			
10101	Srinivasan	Comp. Sci.	65000			
58583	Califieri	History	62000			
83821	Brandt	Comp. Sci.	92000			
15151	Mozart	Music	40000			
33456	Gold	Physics	87000			
76543	Singh	Finance	80000			

	te	eaches	;	
ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2017
10101	CS-315	1	Spring	2018
10101	CS-347	1	Fall	2017
12121	FIN-201	1	Spring	2018
15151	MU-199	1	Spring	2018
22222	PHY-101	1	Fall	2017
32343	HIS-351	1	Spring	2018
45565	CS-101	1	Spring	2018
45565	CS-319	1	Spring	2018
76766	BIO-101	1	Summer	2017
76766	BIO-301	1	Summer	2018
83821	CS-190	1	Spring	2017
83821	CS-190	2	Spring	2017
83821	CS-319	2	Spring	2018
98345	EE-181	1	Spring	2017

The Relational Algebra

The relational algebra consists of a set of *operators*. To query relational data we use a composition of relational operators:

- Each relational operator takes one or two relations as input
- Each relational operator defines a single output/result relation in terms of its input
- Relational operators can be composed to form expression that define new relations in terms of existing relations

Selection

 $\sigma_{\rm condition}(R)$

- Result schema: same as R
- Result instance: subset of tuples in R that satisfies the condition

Example: find the instructors who are in the *Physics* department

instructor						
ID	name	dept_name	salary			
22222	Einstein	Physics	95000			
12121	Wu	Finance	90000			
32343	El Said	History	60000			
45565	Katz	Comp. Sci.	75000			
98345	Kim	Elec. Eng.	80000			
76766	Crick	Biology	72000			
10101	Srinivasan	Comp. Sci.	65000			
58583	Califieri	History	62000			
83821	Brandt	Comp. Sci.	92000			
15151	Mozart	Music	40000			
33456	Gold	Physics	87000			
76543	Singh	Finance	80000			

$\sigma_{dept_name="Physics"}$	(instructor)	
---------------------------------	--------------	--

-			
ID	name	dept_name	salary
22222	Einstein	Physics	95000
33456	Gold	Physics	87000

The selection condition can include:

- any column of R or constants
- comparision $(=, \neq, >, \ge, <, \le)$
- Boolean connectives (\land,\lor,\neg)

Note: the condition should be able to be evaluated over each *single* row of the input table

Valid: $\sigma_{dept_name="Physics" \land salary > 80000}(instructor)$ Invalid: $\sigma_{salary>every salary in instructor}(instructor)$

Projection

 $\pi_{\text{attributes}}(R)$

- Result schema: includes only the specified attributes
- Result instance: could have as many tuples as R, except that duplicates are eliminated

Example: list all instructors' ID, name, and salary

instructor						
ID	name	dept_name	salary			
22222	Einstein	Physics	95000			
12121	Wu	Finance	90000			
32343	El Said	History	60000			
45565	Katz	Comp. Sci.	75000			
98345	Kim	Elec. Eng.	80000			
76766	Crick	Biology	72000			
10101	Srinivasan	Comp. Sci.	65000			
58583	Califieri	History	62000			
83821	Brandt	Comp. Sci.	92000			
15151	Mozart	Music	40000			
33456	Gold	Physics	87000			
76543	Singh	Finance	80000			

$\pi_{ID,name,salary}($	instructor)
-------------------------	-------------

ID	name	salary
10101	Srinivasan	65000
12121	Wu	90000
15151	Mozart	40000
22222	Einstein	95000
32343	El Said	60000
33456	Gold	87000
45565	Katz	75000
58583	Califieri	62000
76543	Singh	80000
76766	Crick	72000
83821	Brandt	92000
98345	Kim	80000

Example: we can use projection on the result of selection like so

 $\operatorname{temp} \leftarrow \sigma_{salary > 80000}(instructor)$ Result $\leftarrow \pi_{name,dept \quad name}(\operatorname{temp})$

To shorten this we can directly compose the two expressions into

 $\pi_{name,dept_name}(\sigma_{salary>80000}(instructor))$

The result of this query is: {(Einstein, Physics), (Wu, Finance), (Brandt, Comp.Sci.), (Gold, Physics)}

Cross Product

$R_1 \times R_2$

- Result schema: has all attributes of R_1 and all attributes of R_2
- Result instance: includes one tuple for every pair of tpules in R_1 and R_2
- sometimes called the Cartesian product

Example:

R					
A	B	$R \times$	S		
a_1	b_1	A	B	C	D
a_2	b_2	a_1	b_1	<i>c</i> ₁	d_1
a_3	b_3	a_2	b_2	c_1	d_1
G		a_3	b_3	c_1	d_1
S		a_1	b_1	<i>c</i> ₂	d_2
C	D	a_2	b_2	c_2	d_2
<i>c</i> ₁	d_1	a_3	b_3	c_2	d_2
c_2	d_2				

Conditional Join

$$R_1 \Join_{\text{condition}} R_2$$

- equivalent to $\sigma_{\text{condition}}(R_1 \times R_2)$
- condition is a Boolean expression involving attributes from both operand relations

 $R_1.A \ \theta \ R_2.B$ where $\theta \in \{=, \neq, >, \geq, <, \leq\}$

• sometimes called the θ -join

Example:

instructor						
ID	name	dept_name	salary			
22222	Einstein	Physics	95000			
12121	Wu	Finance	90000			
32343	El Said	History	60000			
45565	Katz	Comp. Sci.	75000			
98345	Kim	Elec. Eng.	80000			
76766	Crick	Biology	72000			
10101	Srinivasan	Comp. Sci.	65000			
58583	Califieri	History	62000			
83821	Brandt	Comp. Sci.	92000			
15151	Mozart	Music	40000			
33456	Gold	Physics	87000			
76543	Singh	Finance	80000			

teaches							
ID	course_id	sec_id	semester	year			
10101	CS-101	1	Fall	2017			
10101	CS-315	1	Spring	2018			
10101	CS-347	1	Fall	2017			
12121	FIN-201	1	Spring	2018			
15151	MU-199	1	Spring	2018			
22222	PHY-101	1	Fall	2017			
32343	HIS-351	1	Spring	2018			
45565	CS-101	1	Spring	2018			
45565	CS-319	1	Spring	2018			
76766	BIO-101	1	Summer	2017			
76766	BIO-301	1	Summer	2018			
83821	CS-190	1	Spring	2017			
83821	CS-190	2	Spring	2017			
83821	CS-319	2	Spring	2018			
98345	EE-181	1	Spring	2017			

instructor	⊠instructor_ID=teaches_ID	teaches
------------	---------------------------	---------

instructor.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2017
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2017
12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2018
15151	Mozart	Music	40000	15151	MU-199	1	Spring	2018
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2017
32343	El Said	History	60000	32343	HIS-351	1	Spring	2018
45565	Katz	Comp. Sci.	75000	45565	CS-101	1	Spring	2018
45565	Katz	Comp. Sci.	75000	45565	CS-319	1	Spring	2018
76766	Crick	Biology	72000	76766	BIO-101	1	Summer	2017
76766	Crick	Biology	72000	76766	BIO-301	1	Summer	2018
83821	Brandt	Comp. Sci.	92000	83821	CS-190	1	Spring	2017
83821	Brandt	Comp. Sci.	92000	83821	CS-190	2	Spring	2017
83821	Brandt	Comp. Sci.	92000	83821	CS-319	2	Spring	2018
98345	Kim	Elec. Eng.	80000	98345	EE-181	1	Spring	2017

Natural Join

 $R_1 \bowtie R_2$

- 1. Compute $R_1 \times R_2$ (renaming duplicate attributes)
- 2. Eliminate from the cross product any tuples that do have matching values for all pairs of attributes common in scheme R_1 and R_2
- 3. Project out duplicate attributes

If no attributes in common, this is just a product

Consider the natural join of the *instructor* and *teaches* tables, which have the attribute ID in common

- Result(ID, name, dept_name, salary, course_id, sec_id, semester, year)
- Resulting relation will include one tuple for each tuple in the *teaches* relation

Rename

Rename the name of the relation, the names of the attributes, or both

• Rename relation R to S

 $\rho_S(R)$

• Rename attributes of relation R

 $\rho_{(A \to A', \dots)}(R)$

• Rename relation R to S and the names of its attributes

$$\rho_{S(A \to A', \dots)}(R)$$

Output: a relation with the same rows as R, but named differently.

Example:

Set-Based Relational Operators

Definition: two schemas are *union compatible* if they both have the same number of fields with same type for corresponding fields

Example:

Courses in Fall 2017					
course_id	semester	year			
CS-101	Fall	2017			
CS-347	Fall	2017			
PHY-101	Fall	2017			

course_id	semester	year			
CS-101	Spring	2018			
CS-315	Spring	2018			
CS-319	Spring	2018			
CS-319	Spring	2018			
FIN-201	Spring	2018			
HIS-351	Spring	2018			
MU-199	Spring	2018			

MU-199

course_id CS-347 PHY-101

Courses in Spring 2017

For the following 3 set based relation operations the schemas of R and S must be *union compatible*:

• Union: all tuples that appear in either R or S or both (S and B must be union compatible)

```
R\cup S
```

- e.g. find all course IDs taught in Fall 2017, Spring 2018, or both:

course_id	semester	year		course_id	semester	year		course_id
CS-101	Fall	2017		CS-101	Spring	2018		CS-101
CS-347	Fall	2017	U	CS-315	Spring	2018	=	CS-347
PHY-101	Fall	2017		CS-319	Spring	2018		PHY-101
				CS-319	Spring	2018		CS-315
				FIN-201	Spring	2018		CS-319
				HIS-351	Spring	2018		FIN-201
				MU-199	Spring	2018		HIS-351

project course_id, then union

• Difference: all tuples that appear in R and do not appear in S (S and B must be union compatible)

R-S

- e.g. find all course IDs taught in Fall 2017 but not Spring 2018:

course_id	semester	year		course_id	semester	year
CS-101	Fall	2017		CS-101	Spring	2018
CS-347	Fall	2017	-	CS-315	Spring	2018
PHY-101	Fall	2017		CS-319	Spring	2018
				CS-319	Spring	2018
				FIN-201	Spring	2018
				HIS-351	Spring	2018
				MU-199	Spring	2018

project course_id, then minus

• Intersection: all tuples that appear in both R and S (R and S must be union compatible)

 $R\cap S$

- e.g. find all course IDs taught in both Fall 2017 and Spring 2018:

project course id, then intersect

Relational Division

 $R\div S$

- Used to answer queries involving all (e.g. which employees work on all critical projects)
- Attributes of S must be subset of attributes of R
- $\operatorname{attr}(R \div S) = \operatorname{attr}(R) \operatorname{attr}(S)$
- Tuple t is in $(R \div S)$ iff $(t \times S)$ is a subset of R

Example: division is the inverse of product:

Example: which employees work on all critical projects? Works(Enum, Pno) and Critical(Pno)

Works			
Enum	Pnum		
E35	P10	Critical	Works ÷ Critical
E45	P15	Pnum	Enum
E35	P12	D15	E45
E52	P15	P10	E45
E52	P17	PIO	E35
E45	P10		
E35	P15		

Notice that product is not always the inverse of division (e.g. (Works \div Critical) \times Critical)

Algebraic Equivalences

The following are all equivalent:

 $\pi_{\text{name,course id}}(\sigma_{\text{dept name="Physics"}}(\sigma_{\text{instructor.ID=teaches.ID}}(\text{instructor} \times \text{teaches})))$

 $\pi_{\text{name,course_id}}(\sigma_{\text{dept_name="Physics"}}(\text{instructor} \bowtie_{\text{instructor.ID=teaches.ID}} \text{ teaches}))$

 $\pi_{\text{name,course id}}(\text{instructor} \bowtie_{\text{instructor.ID}=\text{teaches.ID}} \sigma_{\text{dept name}=\text{"Physics"}}(\text{teaches}))$

$$\pi_{\text{name,course_id}}((\pi_{\text{ID,name}}(\text{instructor})) \bowtie_{\text{instructor.ID=teaches.ID}} (\pi_{\text{ID,course_id}}(\sigma_{\text{dept_name="Physics"}}(\text{teaches}))))$$

These all perform the same action but some run faster than others. More on this in database tuning topic.

Relational Completeness

Definition: a query language that is at least as expressive as relational algebra is *relationally complete* Relational algebra and SQL are both relationally complete.

SQL even has additional expressive power because it captures aggregation, ordering, etc.

Structured Query Language (SQL)

The Structured Query Language (SQL) is made up of three sub-languages:

- SQl Data Manipulation Lnaugage (DML)
 - SELECT statements performs queries
 - $-\,$ INSERT, UPDATE, DELETE statements modify the table instance
- SQL Data Definition Lnaguage (DDL)

- CREATE, DROP statements modify the database schema
- SQL Data Control Language (DCL)
 - GRANT, REVOKE statements enfore the security model

Database Schema Used for Examples

Tables

SQL DDL: Data Types

Some of the attribute types (or domains) defined in SQL:

- *integer* or *int*: machine-dependent finite subset of integers
 - e.g. 4-byte integer type can store:

signed value $\in [-2147483648, 2147483647]$ unsigned value $\in [0, 4294967295]$

- smallint: small integer (machine-dependent subset of integer domain)
 - e.g. 2-byte smallint type can store:

signed value $\in [-32768, 32767]$ unsigned value $\in [0, 65535]$

• numeric(p, q): p-digit numbers, with q digits right of the decimal point

- decimal point and minus sign are not counted in p

- e.g. numeric(3, 1) allows 44.5 to be stored exactly but not 444.5 or 0.32
- *real, double precision*: floating point and double-precision floating point numbers with machine-dependent precision
- float(n): floating point number, with user-specified precision of at least n digits
- char(n): fixed length character strings, with user-specified length n

- string shorter than *n* will be padded to *n* length by appending spaces

- varchar(n): variable length character strings, with user-specified maximum length n
- *date*: describes a year, month, day
- *time*: describes a hour, minute, second
- *timestamp*: describes a data and the time on that date
- interval: allows computation based on dates and times on interval

Create Table

A SQL relation is defined using the create table command:

```
1 create table r (
2 A1 D1,
3 ...,
4 An Dn,
5 integrity-constraint-1,
6 ...,
7 integrity-constraint-k)
```

- r is the name of the relation
- $\bullet\,$ Ai is an attribute name with domain of values $\tt Di$
- We will see more about integrity constraints later, for now we have:
 - primary key (A1, ..., An)

- foreign key (A1, ..., An) references r

SQL prevents any update to the database that violates an integrity constraint

Example:

```
1 create table instructor (
2 ID char(5),
3 name varchar(20),
4 dept_name varchar(20),
5 salary numeric(8,2),
6 primary key (ID),
7 foreign key (dept_name) references department)
```

Basic Structure of SQL Queries

select Clause

select clause lists attributes desired in the query result (projection operation in relational algebra)

- SQL names are case insensitive so the following queries are equivalent:
 - select dept_name from instructor
 - select Dept_Name from instructor
 - select DEPT_NAME from instructor
- Default is to allow duplicates in relations and query results
 - To eliminate duplicates from query result use select distinct
- Asterisk in select clause denotes all attributes
 - e.g. select * from instructor will return the entire instructor table
- select clause can be used with arithemetic expressions $\{+, -, *, /\}$ to modify attributes

Examples:

- select dept_name from instructor
 - finds the department names of all instructors

		instr	uctor	
	ID	name	dept_name	salary
	10101	Calairean	Comp Cal	65000
	10101	Srinivasan	Comp. Sci.	03000
	12121	Wu	Finance	90000
	15151	Mozart	Music	40000
	22222	Einstein	Physics	95000
	32343	El Said	History	60000
	33456	Gold	Physics	87000
	45565	Katz	Comp. Sci.	75000
	58583	Califieri	History	62000
	76543	Singh	Finance	80000
	76766	Crick	Biology	72000
	83821	Brandt	Comp. Sci.	92000
	98345	Kim	Elec. Eng.	80000
Ļ			<u> </u>	

- select distinct dept_name from instructor
 - finds department names of all instructors then removes duplicates

	instr	uctor		
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	query res
12121	Wu	Finance	90000	dept_nam
15151	Mozart	Music	40000	Comp. Sc:
22222	Einstein	Physics	95000	Finance
32343	El Said	History	60000	Music
33456	Gold	Physics	87000	Physics
45565	Katz	Comp. Sci.	75000	Flysics
58583	Califieri	History	62000	History
76543	Singh	Finance	80000	Biology
76766	Crick	Biology	72000	Elec. Eng
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

- select distinct dept_name, salary from instructor
 - find department names and salary of all instructors then remove duplicate pairs

	instr	uctor		que	ery re
ID	name	dept_name	salary	dept_	name
10101	Srinivasan	Comp Sci	65000	Biolo	gy
12121	Wu	Einance	90000	Comp.	Sci.
15151	Mozart	Music	40000	Comp.	Sci.
22222	Einstein	Physics	95000	Comp.	Sci.
32343	El Said	History	60000	Elec.	Eng.
33456	Gold	Physics	87000	Finan	ce
45565	Katz	Comp. Sci.	75000	Finan	ce
58583	Califieri	History	62000	Histo	ry
76543	Singh	Finance	80000	Histo	ry
76766	Crick	Biology	72000	Music	-
83821	Brandt	Comp. Sci.	92000	Physi	cs
98345	Kim	Elec. Eng.	80000	Physi	cs

• select * from instructor

	instr	uctor			query	v result	
ID	name	dent name	salarv	ID	name	dept_name	sala
12	nume	acpilliance	Sarary	1010	1 Srinivasan	Comp. Sci.	6500
10101	Srinivasan	Comp. Sci.	65000	1212	1 Wu	Finance	900
12121	Wu	Finance	90000	1515	1 Mozart	Music	4000
15151	Mozart	Music	40000	2222	2 Finctoin	Dhysics	050
22222	Einstein	Physics	95000	2222	ZEINSTEIN	Physics	9201
32343	El Said	History	60000	3234	3 El Said	History	6000
33456	Gold	Physics	87000	3345	6 Gold	Physics	8700
45565	Katz	Comp. Sci.	75000	4556	5 Katz	Comp. Sci.	7500
58583	Califieri	History	62000	5858	3 Califieri	History	6200
76543	Singh	Finance	80000	7654	3 Singh	Finance	8000
76766	Crick	Biology	72000	7676	6 Crick	Biology	7200
83821	Brandt	Comp. Sci.	92000	0.000		Camp Cai	0200
98345	Kim	Elec. Eng.	80000	8382	TBLAUGT	Comp. Sci.	9200
		Bi	22000	9834	5 Kim	Elec. Eng.	8000

• select ID, name, salary/12 as monthly_salary from instructor

- compute monthly salary of each instructor

	instr	uctor			query	result
ID	name	dept_name	salary	ID	name	monthly_sa
10101	Crinivasan	Comp Sai	65000	10101	Srinivasan	5416
10101	Srinivasan	Einenee	00000	12121	. Wu	7500
12121	wu Mozart	Music	40000	15151	Mozart	3333
22222	Finstein	Physics	95000	22222	Einstein	7916
32343	El Said	History	60000	32343	El Said	5000
33456	Gold	Physics	87000	33456	Gold	7250
45565	Katz	Comp. Sci.	75000	45565	Katz	6250
58583	Califieri	History	62000	58583	Califieri	5166
76543	Singh	Finance	80000	76543	Singh	6666
76766	Crick	Biology	72000	76766	Crick	6000
83821	Brandt	Comp. Sci.	92000	83821	Brandt	7666
98345	Kim	Elec. Eng.	80000	98345	Kim	6666

where Clause

where clause specifies conditions on the query result (selection operation in relational algebra)

- Comparisons can be applied to results of arithmetic expressions
- Comparison operations are $\{<, <=, >, >=, =, <>\}$
- Logical connectives are {and, or, not}

Examples:

- find all instructors in Comp. Sci. department
- 1 select name
- 2 from instructor
- 3 where dept_name = 'Comp. Sci.'

instructor								
ID	name	dept_name	salary					
10101	Srinivasan	Comp. Sci.	65000					
12121	Wu	Finance	90000					
15151	Mozart	Music	40000					
22222	Einstein	Physics	95000					
32343	El Said	History	60000					
33456	Gold	Physics	87000					
45565	Katz	Comp. Sci.	75000					
58583	Califieri	History	62000					
76543	Singh	Finance	80000					
76766	Crick	Biology	72000					
83821	Brandt	Comp. Sci.	92000					
98345	Kim	Elec. Eng.	80000					

query result

Srinivasar
Katz
Brandt

- find all instructors in Comp. Sci. department whose monthly salary is greater than 5000
- 1 select name
- 2 from instructor
- where dept_name = 'Comp. Sci.' and salary/12 > 5000

	instructor								
ID	name	dept_name	salary						
10101	Srinivasan	Comp. Sci.	65000						
12121	Wu	Finance	90000						
15151	Mozart	Music	40000						
22222	Einstein	Physics	95000						
32343	El Said	History	60000						
33456	Gold	Physics	87000						
45565	Katz	Comp. Sci.	75000						
58583	Califieri	History	62000						
76543	Singh	Finance	80000						
76766	Crick	Biology	72000						
83821	Brandt	Comp. Sci.	92000						
98345	Kim	Elec. Eng.	80000						

query result
name
Srinivasan
Katz
Brandt

from Clause

from clause lists the relations involved in the query (cartesian product operation in relational algebra)

Example: select * from instructor, teaches

- Result is the cross product of *instructor* and teaches
- Generates every possible instructor-teaches pair (common attributes are renamed with relation name)

Image: bit structor bit structure Image: bit structure						,	1					раг	rtia	l resu	ılt			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		instr	uctor			tea	<u>icn</u>	es		instructor.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
22222 Einstein Physics 90000 22222 PHY-101 1 Fail 2017 32343 El Said History 60000 32343 History 60000 3243 History 60000 3243 History 60000 76766 BIO-101 1 Spring 2017 12121 Wu Finance 90000 10101 CS-315 1 Spring 2017 2018 321	<i>ID</i> 10101 12121 15151	name Srinivasan Wu Mozart	dept_name Comp. Sci. Finance Music	salary 65000 90000 40000	1D 10101 10101 10101 12121 15151	course_id CS-101 CS-315 CS-347 FIN-201 MU-199	sec_id 1 1 1 1	semester Fall Spring Fall Spring Spring	year 2017 2018 2017 2018 2018	10101 10101 10101 10101 10101	Srinivasan Srinivasan Srinivasan Srinivasan Srinivasan	Comp. Sci. Comp. Sci. Comp. Sci. Comp. Sci. Comp. Sci.	65000 65000 65000 65000 65000	10101 10101 10101 12121 15151	CS-101 CS-315 CS-347 FIN-201 MU-199	1 1 1 1	Fall Spring Fall Spring Spring	2017 2018 2017 2018 2018
	22222 32343 33456 45565 58583 76543 76766 83821 98345	Einstein El Said Gold Katz Califieri Singh Crick Brandt Kim	Physics History Physics Comp. Sci. History Finance Biology Comp. Sci. Elec. Eng.	95000 60000 87000 75000 62000 80000 72000 92000 80000	22222 32343 45565 45565 76766 83821 83821 83821 83821 98345	PHY-101 HIS-351 CS-101 CS-319 BIO-101 BIO-301 CS-190 CS-190 CS-190 CS-319 EE-181	1 1 1 1 1 1 1 2 2 1	Fall Spring Spring Summer Summer Spring Spring Spring Spring	2017 2018 2018 2018 2017 2018 2017 2018 2017 2018 2017	10101 12121 12121 12121 12121 12121 12121 12121	Srinivasan Wu Wu Wu Wu Wu Wu Wu	Comp. Sci. Finance Finance Finance Finance Finance Finance Finance	65000 90000 90000 90000 90000 90000 90000	22222 10101 10101 10101 12121 15151 22222	PHY-101 CS-101 CS-315 CS-347 FIN-201 MU-199 PHY-101	1 1 1 1 1 1 1 1	Fall Fall Spring Fall Spring Spring Fall	2017 2017 2018 2017 2018 2018 2018 2017

inner join Clause

inner join is clause is equivalent using from and where (conditional join in relational algebra)

Example: find the names of all instructions who are teaching a course

```
1 select *
```

- 2 from instructor, teaches
 3 where instructor.ID = teaches.ID
- select *
 from instructor inner join teaches
 on instructor.ID = teaches.ID

	instructor								
ID	name	dep	ot_name	salary					
10101	Srinivasa	n Co	mp. Sci.	65000					
12121	Wu	Fir	ance	9000	00				
15151	Mozart	Mu	isic	4000	00				
22222	Einstein	Ph	ysics	9500	00				
32343	El Said	His	story	6000	00				
33456	Gold	Ph	ysics	87000					
45565	Katz	Co	mp. Sci.	75000					
58583	Califieri	His	story	62000					
76543	Singh	Fir	ance	8000	00				
76766	Crick	Bio	ology	7200	00				
83821	Brandt	Co	mp. Sci.	92000					
98345	Kim	Ele	c. Eng.	8000	00				
teaches									
ID	course_id	sec_id	semeste	r yea	ır				
10101	CS-101	1	Fall	20	17				
10101	CS-315	1	1 Spring		18				
10101	CS-347	1	1 Fall		17				

100101105								
ID	course_id	sec_id	semester	year				
10101	CS-101	1	Fall	2017				
10101	CS-315	1	Spring	2018				
10101	CS-347	1	Fall	2017				
12121	FIN-201	1	Spring	2018				
15151	MU-199	1	Spring	2018				
22222	PHY-101	1	Fall	2017				
32343	HIS-351	1	Spring	2018				
45565	CS-101	1	Spring	2018				
45565	CS-319	1	Spring	2018				
76766	BIO-101	1	Summer	2017				
76766	BIO-301	1	Summer	2018				
83821	CS-190	1	Spring	2017				
83821	CS-190	2	Spring	2017				
83821	CS-319	2	Spring	2018				
98345	EE-181	1	Spring	2017				

instructor $\bowtie_{instructor.ID=teaches.ID}$ teaches

instructor.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2017
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2018
10101	Srinivasan	Comp. Sci.	65000	10101	CS-347	1	Fall	2017
12121	Wu	Finance	90000	12121	FIN-201	1	Spring	2018
15151	Mozart	Music	40000	15151	MU-199	1	Spring	2018
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2017
32343	El Said	History	60000	32343	HIS-351	1	Spring	2018
45565	Katz	Comp. Sci.	75000	45565	CS-101	1	Spring	2018
45565	Katz	Comp. Sci.	75000	45565	CS-319	1	Spring	2018
76766	Crick	Biology	72000	76766	BIO-101	1	Summer	2017
76766	Crick	Biology	72000	76766	BIO-301	1	Summer	2018
83821	Brandt	Comp. Sci.	92000	83821	CS-190	1	Spring	2017
83821	Brandt	Comp. Sci.	92000	83821	CS-190	2	Spring	2017
83821	Brandt	Comp. Sci.	92000	83821	CS-319	2	Spring	2018
98345	Kim	Elec. Eng.	80000	98345	EE-181	1	Spring	2017

Example: name and course id of instructors in Comp. Sci. dept who have taught a course in 2017

```
select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID
and instructor.dept_name = 'Comp. Sci.'
and year = 2017

select name, course_id
from instructor inner join teaches
from instructor inner join teaches
from instructor.ID = teaches.ID
where instructor.dept_name = 'Comp. Sci.'
and year = 2017
```

natural join Clause

natural join automatically removes one of the two join attributes

Example:

• Query 1: select * from instructor, teaches

- instructor.ID, name, dept_name, salary, teaches.ID, course_id, sec_id, semester, year

- Query 2: select * from instructor natural join teaches
 - ID, name, dept_name, salary, course_id, sec_id, semester, year

Basic Query Strucutre

A typical SQL query of attributes A_i from relations r_k has the from:

select A1, A2, ..., An
from r1, r2, ..., rm
where condition

This is called an SFW (select-from-where) or SPJ (select-project-join) query.

It is equivalent to the following relational algebra expression:

 $\pi_{A_1,\ldots,A_n}(\sigma_{\text{condition}}(r_1\times\cdots\times r_m))$

Additional Basic Operations

as Clause

as clause changes the names of attributes and relations (rename in relational algebra)

Example:

```
select name as instructor_name, course_id
```

- 2 from instructor, teaches
- 3 where instructor.ID = teaches.ID

query resul	lt without	"as	instructor_	_name"

name	course_id
Srinivasan	CS-101
Srinivasan	CS-315
Srinivasan	CS-347
Wu	FIN-201
Mozart	MU-199
Einstein	PHY-101
El Said	HIS-351
Katz	CS-101
Katz	CS-319
Crick	BI0-101
Crick	BI0-301
Brandt	CS-190
Brandt	CS-190
Brandt	CS-319
Kim	EE-181

query result with us instructor nume	querv	result	with	"as	instructor	name
---	-------	--------	------	-----	------------	------

instructor_	name	course_id
Srinivasan		CS-101
Srinivasan		CS-315
Srinivasan		CS-347
Wu		FIN-201
Mozart		MU-199
Einstein		PHY-101
El Said		HIS-351
Katz		CS-101
Katz		CS-319
Crick		BI0-101
Crick		BI0-301
Brandt		CS-190
Brandt		CS-190
Brandt		CS-319
Kim		EE-181

Example: Find the ID and name of instructors who earn more than the instructor whose ID is "12121'

• The issue that is we need to compare tuples in the same relation for the join

```
select T.ID, T.name
2 from instructor as T, instructor as S
3 where T.salary > S.salary and S.ID = '12121'
```

	instr	uctor	
ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

sults

salary

95000 90000

60000

75000

80000

72000

65000 62000

92000 40000 87000

80000

This works but the performance is pretty bad, we	will see a better method to do this later
--	---

String Operations

- SQL string are enclosed by single quotes: 'Computer'
 - Single quotes in a string is denoted using two single quotes: 'It''s all right'
- SQL standard specifies that string comparison is case sensitive
 - 'database' = 'DataBase' should be *false* but not all DBMS follow this (e.g. MySQL)
- SQL permits a variety of string functions:
 - concatenation
 - upper and lower case conversions
 - string length, substrings, etc (check DBMS manual for more)

like Operation

like is a string-matching operation for string pattern matching.

- Two special characters are used for describing patterns
 - percent %: matches any substring
 - underscore _: matches any character
- Patterns are case sensitive
- Use escape to define an escape character
 - e.g. to match the string "100%" we use: like '100\%' escape '\'
- Some pattern matching examples:
 - 'Intro%' matches any string that begins with "Intro"
 - '%Comp%' matches any string containing "Comp" as a substring
 - '____' matches any string of exactly three characters
 - '___%' matches any string of at least three characters

Example: find the names of all instructors whose name includes the substring "in"

- 1 select name
- 2 from instructor
- 3 where name like '%in%'

	instr			
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	auery result
15151	Mozart	Music	40000	queryresuu
22222	Einstein	Physics	95000	name
32343	El Said	History	60000	Srinivasan
33456	Gold	Physics	87000	Linctoin
45565	Katz	Comp. Sci.	75000	Einstein
58583	Califieri	History	62000	Singh
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

between Operation

Find the names of all instructors with salary between \$90,000 and \$100,000

```
select name
from instructor
where salary >= 90000 and salary <= 100000</pre>
```

```
1 select name
2 from instructor
3 where salary between 90000 and 100000
```

Tuple Comparision

Find the names of instructors in the department of Biology and the IDs of courses taught by them

```
1 select name, course_id
2 from instructor, teaches
3 where instructor.ID = teaches.ID
4 and dept_name = 'Biology'
1 select name, course id
2 from instructor, teaches
3 where (instructor.ID, dept_name)
4 = (teaches.ID, 'Biology')
```

Ordering Operations

order by attr is followed by asc for ascending or desc for descending

- By default order by assumes asc
- Can sort by multiple attributes

List all instructor names alphabetically (ascending)

- 1 select name
- 2 from instructor
- 3 order by name asc

query result name Brandt Califieri Crick

Crick
Einstein
El Said
Gold
Katz
Kim
Mozart
Singh
Srinivasan
Wu

Sort two attributes in ascending order

- select dept_name, name
- 2 from instructor
- 3 order by dept_name, name

query result

dept_name	name
Biology	Crick
Comp. Sci.	Brandt
Comp. Sci.	Katz
Comp. Sci.	Srinivasan
Elec. Eng.	Kim
Finance	Singh
Finance	Wu
History	Califieri
History	El Said
Music	Mozart
Physics	Einstein
Physics	Gold

Set Operations

Set operations in SQL and Relational Algebra (RA):

SQL	RA
union	U
intersect	\cap
except	_

- When using union, intersect, except the duplicates will be removed
 - To retain duplicates use union all, intersect all, except all

List all instructor names alphabetically (descending)

- 1 select name
- 2 from instructor
- 3 order by name desc

query result									
	name								
Wu									
Sr	inivasan								
Si	ngh								
Мо	zart								
Ki	m								
Ka	tz								
Go	ld								
El	Said								
Ei	nstein								
Cr	ick								
Ca	lifieri								
Br	andt								

Sort two attributes in descending order

- select dept_name, name
- 2 from instructor
- ³ order by dept_name, name desc

query result

dept_name	name				
Biology	Crick				
Comp. Sci.	Srinivasan				
Comp. Sci.	Katz				
Comp. Sci.	Brandt				
Elec. Eng.	Kim				
Finance	Wu				
Finance	Singh				
History	El Said				
History	Califieri				
Music	Mozart				
Physics	Gold				
Physics	Einstein				

- Not every DBMS supports intersect all and except all, e.g. SQLite
- The requirements to use set operations is that the two schemas be *union compatible*
 - Same number of attributes
 - Same type for corresponding attribute

Example: SQL set operations

Aggregate Functions

Definition: an Aggregate Function takes the values of a table column and outputs a single scalar value

SQL standard aggregate functions:

- avg finds average value
- $\bullet\,$ min finds minimum value
- max finds maximum value
- $\bullet\,$ sum gets sum of values
- count gets number of values

Examples:

- find the average salary of instructors in Comp. Sci. department
- select avg(salary) as avg_salary
- 2 from instructor
- 3 where dept_name = 'Comp. Sci.'

instructor							
ID	name	dept_name	salary				
10101	Srinivasan	Comp. Sci.	65000				
12121	Wu	Finance	90000				
15151	Mozart	Music	40000				
22222	Einstein	Physics	95000				
32343	El Said	History	60000				
33456	Gold	Physics	87000				
45565	Katz	Comp. Sci.	75000				
58583	Califieri	History	62000				
76543	Singh	Finance	80000				
76766	Crick	Biology	72000				
83821	Brandt	Comp. Sci.	92000				
98345	Kim	Elec. Eng.	80000				

- count the number of tuples in the instructor table
- select count(*)
- 2 from instructor

instructor							
ID	name	dept_name	salary				
10101	Srinivasan	Comp. Sci.	65000				
12121	Wu	Finance	90000				
15151	Mozart	Music	40000				
22222	Einstein	Physics	95000				
32343	El Said	History	60000				
33456	Gold	Physics	87000				
45565	Katz	Comp. Sci.	75000				
58583	Califieri	History	62000				
76543	Singh	Finance	80000				
76766	Crick	Biology	72000				
83821	Brandt	Comp. Sci.	92000				
98345	Kim	Elec. Eng.	80000				

query results

- count the number of distinct department names in the instructor table
- select count(distinct dept_name)
- 2 from instructor

instructor							
ID	name	dept_name	salary				
10101	Srinivasan	Comp. Sci.	65000				
12121	Wu	Finance	90000				
15151	Mozart	Music	40000				
22222	Einstein	Physics	95000				
32343	El Said	History	60000				
33456	Gold	Physics	87000				
45565	Katz	Comp. Sci.	75000				
58583	Califieri	History	62000				
76543	Singh	Finance	80000				
76766	Crick	Biology	72000				
83821	Brandt	Comp. Sci.	92000				
98345	Kim	Elec. Eng.	80000				

query results						
count(distinct	dept	_name)				
7						

group by Clause

```
select ...
```

- 2 from ...
- 3 where ...
 4 group by list_of_columns
 - 1. Compute from (\times)
 - 2. Compute where (σ)
 - 3. Compute group by
 - $\bullet\,$ group rows accround to the values of group by columns
 - 4. Compute aggregate functions for each group
 - for aggregation functions with distinct inputs, first eliminate duplicates within the group

Notes:

- Number of rows in final output = number of groups
- Aggregate query with no group by clause treats all the rows as a single group
- Multiple aggregate functions can be used in select
- If a query uses aggregation/group by, then every column referenced in select must appear either
 - in aggregate functions
 - in group by list

Example: find the average salary of instructors in each department

select dept_name, avg(salary) as avg_salary

- 2 from instructor
- 3 group by dept_name

	input relation					oute group ding to the by co	с	compute a function f grou	ggregate or each up		
ID	name	dept_name	salary]	ID	name	dept_name	salary		dept_name	avg_salary
10101	Srinivasan	Comp. Sci.	65000]	76766	Crick	Biology	72000		Biology	72000
12121	Wu	Finance	90000		45565	Katz	Comp. Sci.	75000	1	Comp. Sci.	77333
15151	Mozart	Music	40000		10101	Srinivasan	Comp. Sci.	65000		Elec. Eng.	80000
22222	Einstein	Physics	95000		83821	Brandt	Comp. Sci.	92000		Finance	85000
32343	El Said	History	60000	aroup by	98345	Kim	Elec. Eng.	80000	aggregate	History	61000
33456	Gold	Physics	87000	group of	12121	Wu	Finance	90000	uggroguto	Music	40000
45565	Katz	Comp. Sci.	75000		76543	Singh	Finance	80000		Physics	91000
58583	Califieri	History	62000		32343	El Said	History	60000			
76543	Singh	Finance	80000		58583	Califieri	History	62000			
76766	Crick	Biology	72000		15151	Mozart	Music	40000			
83821	Brandt	Comp. Sci.	92000		33456	Gold	Physics	87000			
98345	Kim	Elec. Eng.	80000		22222	Einstein	Physics	95000			

Example: every column referenced in select must appear in an aggregate function or the group by list

WRONG!!!

WRONG!!!

select dept_name, ID, avg (salary)
from instructor
group by dept_name

select dept_name, **avg** (salary) **from** instructor

The syntax is correct, but the dept_name value in the result is a random one!

having Clause

- 1 select ...
- 2 from ...
- 3 where ...
- 4 group by ...
 5 having condition

This clause is used to filter gorups based on group properties (e.g. aggregate values, group by column values)

- 1. Compute from (\times)
- 2. Compute where (σ)
- 3. Compute group by
 - group rows accround to the values of group by columns
- 4. Compute aggregate functions for each group
 - for aggregation functions with distinct inputs, first eliminate duplicates within the group

compute group by: group rows

- 41

compute aggregate

5. Compute having (another σ over the resulting relation in step 4)

Example: find the names and average salaries of all departments whose average salary is over 42000

```
select dept_name, avg(salary) as avg_salary
```

- 2 from instructor
- 3 group by dept_name
- 4 having avg(salary) > 42000

input relation					accor	by co	func an	tion for ea d then <mark>the</mark>	ach group, e having		
ID	name	dept_name	salary]	ID	name	dept_name	salary]	conditi	on
10101	Srinivasan	Comp. Sci.	65000		76766	Crick	Biology	72000			
12121 15151	Wu Mozart	Finance Music	90000 40000		45565	Katz Srinivasan	Comp. Sci. Comp. Sci.	65000		dept_name	avg_salary
22222	Einstein	Physics	95000		83821	Brandt	Comp. Sci.	92000		Biology	72000
32343	El Said	History	60000	aroup by	98345	Kim	Elec. Eng.	80000	aggregate	Comp. Sci.	77333
33456	Gold	Physics	87000	5.000	12121	Wu	Finance	90000		Elec. Eng.	80000
45565	Katz	Comp. Sci.	75000		76543	Singh	Finance	80000		Finance	85000
58583	Califieri	History	62000		32343	El Said	History	60000		History	61000
76543	Singh	Finance	80000		58583	Califieri	History	62000		Music	40000
76766	Crick	Biology	72000		15151	Mozart	Music	40000	1	Physics	91000
83821	Brandt	Comp. Sci.	92000		33456	Gold	Physics	87000	1		
98345	Kim	Elec. Eng.	80000		22222	Einstein	Physics	95000			
	<i>ID</i> 10101 12121 15151 22222 32343 33456 45565 58583 76543 76564 83821 98345	ID name 10101 Srinivasan 12121 Wu 15151 Mozart 22222 Einstein 32343 El Said 33456 Gold 45565 Katz 58583 Califieri 76543 Singh 76766 Crick 83821 Brandt 98345 Kim	input relationIDnamedept_name10101SrinivasanComp. Sci.12121WuFinance15151MozartMusic22222EinsteinPhysics32343El SaidHistory33456GoldPhysics45565KatzComp. Sci.58583CalifieriHistory76564SinghFinance76766CrickBiology83821BrandtComp. Sci.98345KimElec. Eng.	Input relation ID name dept_name salary 10101 Srinivasan Comp. Sci. 65000 12121 Wu Finance 90000 15151 Mozart Music 40000 22222 Einstein Physics 95000 32343 El Said History 60000 33456 Gold Physics 87000 45565 Katz Comp. Sci. 75000 58583 Califieri History 60000 76543 Singh Finance 80000 76766 Crick Biology 72000 83821 Brandt Comp. Sci. 92000 98345 Kim Elec. Eng. 80000	input relationIDnamedept_namesalary10101SrinivasanComp. Sci.6500012121WuFinance9000015151MozartMusic4000022222EinsteinPhysics9500032343El SaidHistory6000033456GoldPhysics8700045565KatzComp. Sci.7500058583CalifieriHistory6200076543SinghFinance8000076766CrickBiology7200083821BrandtComp. Sci.9200098345KimElec. Eng.80000	ID name dept_name salary 10101 Srinivasan Comp. Sci. 65000 12121 Wu Finance 90000 12121 Wu Finance 90000 12121 Wu Finance 90000 12121 Wu Finance 90000 22222 Einstein Physics 95000 32343 El Said History 60000 33456 Gold Physics 87000 45565 Katz Comp. Sci. 75000 58583 Califieri History 62000 76543 Singh Finance 80000 585831 Califieri Biology 72000 83821 Brandt Comp. Sci. 92000 83821 Brandt Comp. Sci. 92000 98345 Kim Elec. Eng. 80000	ID name dept.name salary 10101 Srinivasan Comp. Sci. 65000 12121 Wu Finance 90000 15151 Mozart Music 40000 22222 Einstein Physics 95000 33456 Gold Physics 87000 45565 Katz Comp. Sci. 75000 58583 Califieri History 60000 58583 Califieri History 60000 76766 Crick Biology 72000 78766 Crick Biology 72000 83821 Brandt Comp. Sci. 92000 98345 Kim Elec. Eng. 80000	Input relationInput relationIDnamedept_namesalary10101SrinivasanComp. Sci.6500012121WuFinance9000015151MozartMusic4000022222EinsteinPhysics9500032343El SaidHistory6000033456GoldPhysics8700045565KatzComp. Sci.7500045565KatzComp. Sci.7500058583CalifieriHistory6200076543SinghFinance8000076564Biology7200083821BrandtComp. Sci.98345KimElec. Eng.83821BrandtComp. Sci.98345KimElec. Eng.83821BrandtComp. Sci.98345KimElec. Eng.98345KimElec. Eng.983	Input relationInput relationIDnamedept_namesalary10101SrinivasanComp. Sci.6500012121WuFinance9000015151MozartMusic4000022222EinsteinPhysics9500032343El SaidHistory6000033456GoldPhysics8700045565KatzComp. Sci.7500045565KatzComp. Sci.7500058583CalifieriHistory6200076766CrickBiology7200076543SinghFinance8000076543SinghFinance8000076564Biology7200083821BrandtComp. Sci.9200083821BrandtComp. Sci.9200083821BrandtComp. Sci.9200083821BrandtComp. Sci.9200098345KimElec. Eng.8000033456GoldPhysics8700022222EinsteinPhysics8700023456GoldPhysics92000	Input relationConcording to the values of group by columnsfunct andIDnamedept_namesalary10101SrinivasanComp. Sci.6500012121WuFinance9000015151MozartMusic4000022222EinsteinPhysics9500033456GoldPhysics8700045565KatzComp. Sci.7500033456GoldPhysics8700045565KatzComp. Sci.7500058583CalifieriHistory6200058583CalifieriHistory6200076766CrickBiology7200076543SinghFinance8000076543SinghFinance8000076766CrickBiology72000783821BrandtComp. Sci.9200083821BrandtComp. Sci.9200098345KimElec. Eng.8000076766CrickBiology7200076766CrickBiology7200083821BrandtComp. Sci.9200098345KimElec. Eng.8000076766Stology7200083821BrandtComp. Sci.9200098345KimElec. Eng.8000098345KimElec. Eng.8000098345KimElec. Eng.8000098345KimElec. Eng.80000	Input relationaccording to the values of group by columnsfunction for ea and then the by columnsIDnamedept_namesalary10101SrinivasanComp. Sci.65000 9000015151MozartMusic40000 45565KatzComp. Sci.75000 1010176766CrickBiology72000 45565KatzComp. Sci.65000 10101SrinivasanComp. Sci.65000 10101SrinivasanComp. Sci.65000 12121WuFinance80000 12121WuFinance80000 12121WuFinance80000 12121Biology 22343Comp. Sci.75000 12121WuFinance80000 12121Biology 23343CalifieriHistory60000 60000 15151MozartMusic40000 15151MozartMusic40000 15151MozartMusic40000 15151Music <td< td=""></td<>

Unknown Values

Null Values

In every domain the special value null indicates unknown or missing data.

Example: user(uid, name, age)

- Value unknown: we do not know Bob's age
- Value missing: Bob did not fill in his name so his name is missing

Three-Valued Logic

When we compare a null with another value (including another null) the result is unknown If the expression contains connectives like and, or, not we evalute them using *three-valued logic*:

> true = 1, false = 0, unknown = 0.5 x and $y = \min(x, y)$ x or $y = \max(x, y)$ not x = 1 - x

- The where and having clauses only select rows for output if condition is true.
- Aggregate functions ignore null except count(*).

			AND(A, B)						0	R(A, E	в)	
NO	T(A)				в			Δ.	B		в	
Α	٦A	A	ΛD	F	U	т		A	/ D	F	U	т
F	т		F	F	F	F			F	F	U	т
U	U	Α	U	F	U	U		Α	U	U	U	т
т	F		т	F	U	Т			т	т	т	т

Truth tables:

Example: the following is NOT equivalent

select name	1 select name
from instructor	2 from instructor
where salary = null	3 where salary is null

- salary = null will *always* produce an unknown as we are comparing null to another value with =
- salary is null is the proper way to check if the is null

Joins

Outer Joins

Outer joins are an extension of the join operation that avoid loss of information

• Dangling tuples: tuples from one relation that do not match tuples in other relation in join result
• Compute the (inner) join then add *dangling* tuples padded with null

Example:

	stu	dent			takes						
ID	name	dept_name	tot_cred	ID	course_id	sec_id	semester	year	grad		
00128	Zhang	Comp. Sci.	102	00128	CS-101	1	Fall	2017	A		
12345	Shankar	Comp. Sci.	32	00128	CS-347	1	Fall	2017	A-		
19991	Brandt	History	80	12345	CS-101	1	Fall	2017	C		
23121	Chavez	Finance	110	12345	CS-190	2	Spring	2017	A		
44553	Peltier	Physics	56	12345	CS-315	1	Spring	2018	A		
45678	Levy	Physics	46	12345	CS-347	1	Fall	2017	A		
54321	Williams	Comp. Sci.	54	19991	HIS-351	1	Spring	2018	B		
55739	Sanchez	Music	38	23121	FIN-201	1	Spring	2018	C+		
70557	Snow	Physics	0	44553	PHY-101	1	Fall	2017	B-		
76543	Brown	Comp. Sci.	58	45678	CS-101	1	Fall	2017	F		
76653	Aoi	Elec. Eng.	60	45678	CS-101	1	Spring	2018	B+		
98765	Bourikas	Elec. Eng.	98	45678	CS-319	1	Spring	2018	B		
98988	Tanaka	Biology	120	54321	CS-101	1	Fall	2017	A-		
				54321	CS-190	2	Spring	2017	B+		
				55739	MU-199	1	Spring	2018	A-		
				76543	CS-101	1	Fall	2017	A		
				76543	CS-319	2	Spring	2018	A		
				76653	EE-181	1	Spring	2017	C		
				98765	CS-101	1	Fall	2017	C-		
				98765	CS-315	1	Spring	2018	B		
				98988	BIO-101	1	Summer	2017	A		
				98988	BIO-301	1	Summer	2018	null		

select *

² from student natural join takes

ID	name	dept_name	tot_cred	course_id	sec_id	semester	year	grade	
00128	Zhang	Comp. Sci.	102	CS-101	1	Fall	2017	Α	
00128	Zhang	Comp. Sci.	102	CS-347	1	Fall	2017	A-	
12345	Shankar	Comp. Sci.	32	CS-101	1	Fall	2017	С	
12345	Shankar	Comp. Sci.	32	CS-190	2	Spring	2017	A	
12345	Shankar	Comp. Sci.	32	CS-315	1	Spring	2018	Α	
12345	Shankar	Comp. Sci.	32	CS-347	1	Fall	2017	A	
19991	Brandt	History	80	HIS-351	1	Spring	2018	В	
23121	Chavez	Finance	110	FIN-201	1	Spring	2018	C+	
44553	Peltier	Physics	56	PHY-101	1	Fall	2017	B-	
45678	Levy	Physics	46	CS-101	1	Fall	2017	F	
45678	Levy	Physics	46	CS-101	1	Spring	2018	B+	
45678	Levy	Physics	46	CS-319	1	Spring	2018	В	
54321	Williams	Comp. Sci.	54	CS-101	1	Fall	2017	A-	
54321	Williams	Comp. Sci.	54	CS-190	2	Spring	2017	B+	
55739	Sanchez	Music	38	MU-199	1	Spring	2018	A-	Snow is not included in the
70557	Snow	Physics	0	null	null	null	null	null	result of natural join!
76543	Brown	Comp. Sci.	58	CS-101	1	Fall	2017	Α	result of matarar join.
76543	Brown	Comp. Sci.	58	CS-319	2	Spring	2018	A	
76653	Aoi	Elec. Eng.	60	EE-181	1	Spring	2017	C	
98765	Bourikas	Elec. Eng.	98	CS-101	1	Fall	2017	C-	
98765	Bourikas	Elec. Eng.	98	CS-315	1	Spring	2018	В	
98988	Tanaka	Biology	120	BIO-101	1	Summer	2017	A	
98988	Tanaka	Biology	120	BIO-301	1	Summer	2018	null	

Expected Query Result

Tuples from one relation that do not match tuples in the other relation are excluded in a join. In this example the *student* "Snow" does not match any tuple in *takes*.

To produce the *Expected Query Result* we need to perform:

select *
from student left outer join takes on student.ID = takes.ID

For T join S we choose which *dangling* tuples to retain using:

- left outer join or left join: keep all tuples in T (left side)
- right outer join or right join: keep all tuples in S (right side)
- full outer join or full join: keep all tuples in T plus all tuples in S

Somewhat confusing graphic

Highly suggest going to db-book. com to try out some examples there.

Join Expressions

Given the relations T(A, B) and S(A, C)

- Comparison operators $\langle comp \rangle$ are: $\langle , \leq , \rangle, \geq , =, \langle \rangle$
- Inner join expressions:
- 1 ... from T, S where T.A <comp> S.A ...
- 2 ... from T join S on T.A <comp> S.A ...
- 3 ... from T inner join S on T.A <comp> S.A ...
- $_4$... from T natural join S ...
- Outer join expressions:

```
1 ... from T full outer join S on T.A <comp> S.A ...
2 ... from T left outer join S on T.A <comp> S.A ...
3 ... from T right outer join S on T.A <comp> S.A ...
4 ... from T full join S on T.A <comp> S.A ...
5 ... from T left join S on T.A <comp> S.A ...
6 ... from T right join S on T.A <op> S.A ...
7 ... from T natural full outer join S ...
```

```
8 ... from T natural left outer join S ...
9 ... from T natural right outer join S ...
10 ... from T natural full join S ...
11 ... from T natural left join S ...
12 ... from T natural right join S ...
```

using Clause

... join S using (list_of_attributes)

- Specifies which columns should be equated and removes duplicate attributes in the result relation
- using clause can be usd with full, left, or right outer joins

Example: given relations T(A, B) and S(A, C) the following are equivalent

```
1 select T.A, B, C
2 from T join S on T.A = S.A
1 select *
2 from T natural join S
1 select *
2 from T join S using(A)
```

Natural Join Pitfalls

Given T(A, B, D) and S(A, C, D)

- For any tuple (a, b, d) in T and any tuple (a', c', d') in S check if a = a' and d = d'
- 1 select A, B, C from T natural join S
- For any tuple (a, b, d) in T and any tuple (a', c', d') in S check only that a = a'
- select T.A, B.C from T inner join S on T.A = S.A

```
select A, B, C from T join S using (A)
```

Given the relations

```
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)
course(course_id, title, dept_name, credits)
```

To list the name of students along with the titles of courses they have taken

```
select name, title
from (student natural join takes) join course using (course_id)
```

The following is incorrect because natural join will require that both *course_id* and *dept_name* match

```
select name, title
```

```
<sup>2</sup> from student natural join takes natural join course
```

Subqueries

Nested Subqueries

Recall that a *select-from-where* (SFW) query is an expression of the form:

```
select A1, ..., An
from r1, ..., rm
where condition
```

A subquery is a SFW expression that is nested within another query.

A subquery even be nested within an SFW query:

- select: A_i can be replaced by a subquery that generates a single value
- from: r_i can be replaced by any valid subquery
- where: condition can be replaced with an expression of the form

B <op> (subquery)

where B is an attribute and $\langle op \rangle$ will be seen later

Example:

- Find average instructor's salaries of departments where the average salary is greater than \$42,000
- select dept_name, avg_salary
- 2 from (select dept_name, avg(salary) as avg_salary
- 3 from instructor
- 4 group by dept_name)
- 5 where avg_salary > 4200

inner query result							
dept_name	avg_salary						
Biology	72000						
Comp. Sci.	77333.333333333333						
Elec. Eng.	80000						
Finance	85000						
History	61000						
Music	40000						
Physics	91000						

query result

dept_name	avg_salary
Biology	72000
Comp. Sci.	77333.3333333333333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

• Find maximum across all departments of the total of all instructors' salaries in each department

```
select max (tot_salary)
```

```
2 from (select dept_name, sum (salary) as tot_salary
```

```
3 from instructor
```

4 group by dept_name)

inner qu	ery result		query result
dept_name	tot_salary		max (tot_salary)
Biology	72000		232000
Comp. Sci.	232000	×	
Elec. Eng.	80000		
Finance	170000	max	
History	122000		
Music	40000		
Physics	182000		

Scalar Subqueries

Subqueries that only returns a single tuple can be used as a value in where and select clauses

Example: find all instructors whose salary is above average

```
select name
from instructor
where salary > (select avg(salary)
from instructor)
```


If the subquery returns more than one tuple then things will go wrong.

Set Membership

• Check if x is in the result of *subquery* (corresponds to *intersect* clause)

x in (subquery)

• Check if x is not in the result of subquery (corresponds to except clause)

x not in (subquery)

Example:

• Find all courses taught in both Fall 2017 and Spring 2018 semesters

• Find all courses taught in the Fall 2017 semester but not in the Spring 2018 semester

• in and not in operators can be used on enumerated sets

```
select distinct name
from instructor
where name not in ('Mozart', 'Einstein')
```

- in and not in operators can be used on *attribute relations*
 - Find the total number of (distinct) students who have taken course sections taught by the instructor with ID 110011

```
select count (distinct ID)
from takes
where (course_id, sec_id, semester, year)
in (select course_id, sec_id, semester, year
from teaches
where teaches.ID='10101')
```

Set Comparison

• for each one (universal quantification)

x <comp> all (subquery)

• at least one (existential quantification)

x <comp> some (subquery)

Example:

- Names of instructors whose salary is greater than salary of *all* instructors in the Comp. Sci.
 - Notice that we can use *max* instead of *all*

- Names of instructors whose salary is greater than salary of *some* instructor in the Comp. Sci.
 - Notice that we can use *min* instead of *some*

Empty Relations Testing

• If the reuslt of the *subquery* is non-empty then return *true*

exists (subquery)

• If the results of the *subquery* is empty then return *false*

```
not exists (subquery)
```

Example:

• Find all courses taught in both the Fall 2017 semester and in the Spring 2018 semester

• Find all courses taught in the Fall 2017 semester but not in the Spring 2018

	6	K	$>$ $\overline{0}$						
þ	select from where not	course sectio semes exists	e_id n as S ster = 'Fa (select from s where	ection section and	l year = : as T ster = 'S S.course	or in 2017 and pring' and y e_id = T.cou	uter query ner query ear= 2018 rse_id)	course_id CS-101 CS-347 PHY-101	<pre>select * from section as T where semester = 'Spring' and year= 2018 and 'CS-101' = T.course_id course_id sec_id semester ye CS-101 1 Spring 20</pre>
·	course_id	sec_id	semester	sec year	tion building	room_number	time_slot_id	outer que ,	select * from section as T where semester = 'Spring' and year= 2018
	BIO-101 BIO-301	1	Summer Summer	2017 2018	Painter Painter	514 514	BA	Question: What are the	and 'CS-347' = T.course_id
	CS-101 CS-101	1	Fall Spring	2017 2018	Packard Packard	101 101	H F	values of <mark>S.course_id</mark> in the inner query?	empty
	CS-190 CS-190 CS-315	1 2 1	Spring Spring Spring	2017 2017 2018	Taylor Taylor Watson	3128 3128 120	E A D	Answer: (CS-101, CS-347, PHY-101)	select *
	CS-319 CS-319 CS-347	1 2 1	Spring Spring Fall	2018 2018 2017	Watson Taylor Taylor	100 3128 3128	B C A		from section as T where semester = 'Spring' and year= 2018
	EE-181 FIN-201 HIS-351	1 1	Spring Spring Spring	2017 2018 2018	Taylor Packard Painter	3128 101 514	C B C	Query result?	
	MU-199 PHY-101	1	Spring Fall	2018 2017	Packard Watson	101 100	Ď A		

- Query result is: CS-315, CS-319, CS-319, FIN-201, HIS-351, MU-199

• Find all students who have taken all courses offered by in the Biology department

Duplicate Tuples Testing

• If the result of the *subquery* contains no duplicate tuples then return *true*

unique (subquery)

 $\bullet\,$ If the result of the subquery contains duplicate tuples then return true

not unique (subquery)

Example:

• Find all courses that were offered at most once in 2017

• Find all courses that were offered at least twice in 2017

Correlated Subqueries

- A subquery that uses a correlation attribute from an outer query
- Semantic: for each tuple obtained from the outer query, compute the inner query
- Correlated subqueries can be used in the select and where clauses of SFW queries
- Nested subqueries in the from clause cannot use correlation variables from other relations in the same from clause, unless the subqueries are prefixed by the lateral keyword

Example:

• Find all instructors whose salary is above average for their department

```
1 select name
2 from instructor as S
3 where salary > (select avg(salary)
                  from instructor
4
                  where dept_name = S.dept_name)
5
```

	instr	query result		
ID	name	dept_name	salary	name
76766	Crials	Dialagy	72000	Wu
/0/00	Crick	Biology	72000	Einstein
45565	Katz	Comp. Sci.	75000	Califieri
10101	Srinivasan	Comp. Sci.	65000	Brandt
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	
12121	Wu	Finance	90000	
76543	Singh	Finance	80000	
32343	El Said	History	60000	
58583	Califieri	History	62000	
15151	Mozart	Music	40000	
33456	Gold	Physics	87000	
22222	Einstein	Physics	95000	

• Print the names of each instructor, along with their salary and the average salary in their department

```
select name, salary,
      (select avg(salary)
2
     from instructor
3
```

```
where dept_name = S.dept_name) as dept_avg
4
```

```
5 from instructor as S
```

instr	uctor

query	result
-------	--------

1							
	ID	name	dept_name	salary	name	salary	dept_avg
	76766	Crick	Biology	72000	Crick	72000	72000
	45565	Katz	Comp. Sci.	75000	Srinivasan	65000	77333.3333333333333
	10101	Srinivasan	Comp. Sci.	65000	Katz	75000	77333.3333333333333
	83821	Brandt	Comp. Sci.	92000	Brandt	92000	77333.3333333333333
	98345	Kim	Elec. Eng.	80000	Kim	80000	80000
	12121	Wu	Finance	90000	Wu	90000	85000
	76543	Singh	Finance	80000	Singh	80000	85000
	32343	El Said	History	60000	El Said	60000	61000
	58583	Califieri	History	62000	Califieri	62000	61000
	15151	Mozart	Music	40000	Mozart	40000	40000
	33456	Gold	Physics	87000	Einstein	95000	91000
	22222	Einstein	Physics	95000	Gold	87000	91000

47

- An alternative way to do the same thing:

```
select name, salary, dept_avg
from instructor T,
lateral (select avg(salary) as dept_avg
from instructor S
where T.dept_name = S.dept_name)
```

with Clause

To define a temporary relation:

with temp_r (list_of_attributes) as (subquery)

Example: find all departments where the total salary is greater than the average of the total salary at all departments

```
with dept_total (dept_name, value) as
1
      (select dept_name, sum(salary)
2
      from instructor
3
      group by dept_name),
4
  dept_total_avg (value) as
5
      (select avg(value)
6
      from dept_total)
7
8 select dept_name
9 from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value
```

dept_total								
dept_name	<pre>sum(salary)</pre>							
Biology	72000							
Comp. Sci.	232000							
Elec. Eng.	80000							
Finance	170000							
History	122000							
Music	40000							
Physics	182000							

dept_	total	_avg
-------	-------	------

avg(value)

128285.71428571429

```
dept_name
Comp. Sci.
Finance
Physics
```

query result

By default just use the with clause, it is almost powerful enough to do almost anything you need.

Data Modification

Updating Table Schema

alter table r add A D

- Add attribute A of type D to table r
- For existing tuples in r, the values of A are assigned null

alter table r drop A

- Drop attribute A in table r
- Dropping of attributes is not supported by many databases (e.g. SQLite)

alter table r rename column old_name to new_name

• Rename column *old* name to column *new* name in table r

alter table r modify A data_type

• Change the type of attribute A to data type in table r

Deletion

drop table instructor

• Delete the instructor relation (instance + schema)

delete from instructor

• Delete all instructors (instance)

```
1 delete from instructor
2 where dept_name = 'Finance'
```

• Delete all instructors from the Finance department

```
1 delete from instructor
2 where dept_name in (select dept_name
3 from department
4 where building = 'Watson')
```

• Delete all tuples in the instructor relation for those instructors associated with a department located in the Watson building

```
1 delete from instructor
2 where salary < (select avg (salary)
3 from instructor)</pre>
```

• Delete all instructors whose salary is less than the average salary of instructors

Insertion

```
insert into course
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4)
insert into course (course_id, title, dept_name, credits)
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4)
```

• Add a new tuple to *course*

```
insert into student
values ('3003', 'Green', 'Finance', null)
```

- Add a new tuple to *student* to tot creds set to null
- When inserting partial rows, the values of omitted attributes are set to null

```
insert into instructor
select ID, name, dept_name, 18000
from student
where dept_name = 'Music' and total_cred > 144
```

• Make each student in the Music dept who has earned more than 144 credit hours an instructor in the Music dept with a salary of \$18,000

```
1 insert into student
2 select *
3 from student
```

• The insertion will insert infinite tuples if the primary key constraint on student is absent

Note: SQL evaluates the select statement fully before it performs any insertions

Update

```
1 update instructor
2 set salary = salary * 1.05
```

• Give a 5% salary raise to all instructors

```
1 update instructor
2 set salary = salary * 1.05
3 where salary < 70000</pre>
```

• Give a 5% salary raise to those instructors who earn less than 70000

```
update instructor
set salary = salary * 1.05
where salary < (select avg (salary)
from instructor)</pre>
```

• Give a 5% salary raise to instructors whose salary is less than average

```
update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;</pre>
```

- Increase salaries of instructors whose salary is over 100,000 by 3% and all others by 5%
- Note that the order is important

```
update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end</pre>
```

• case can be used in any statement or clause that allows a valid expression

Integrity Constraints

Declared as part of the schema and enforced by the DBMS

- Restrictions on allowable data in a database
 - In addition to the simple structure and type restrictions imposed by the table definitions
- Example:
 - An instructor name cannot be null
 - No two instructors can be have the same instructor ID
 - Budgest of a department must be greater than \$0.00
 - Every dept name in course relation must have a matching dept name in the dept relation

Type of SQL Constraints:

- not null
- primary key
- unique
- check (<cond>)
- foreign key
- assertion
 - specifying general constraints but not supported by any DBMS

not null Constraint

not null prohibits the insertion of a null value for an attribute

Example:

	Null is not allowed for instructor na	me.	instr	uctor	
		ID	name	dept_name	salary
create table instructor(IDvarchnamevarchdept_namevarchsalarynumeprimary key (ID),foreign key (dept_name)	ar (5), ar (20) not null, ar (20), eric (8,2), me) references department)	22222 12121 3234 45565 9834 76766 10101 5858 8382 15151 33450 7654	2 Einstein 1 Wu 3 El Said 5 Katz 5 Kim 6 Crick 1 Srinivasan 3 Califieri 1 Brandt 1 Mozart 6 Gold 3 Singh	Physics Finance History Comp. Sci. Elec. Eng. Biology Comp. Sci. History Comp. Sci. Music Physics Finance	95000 90000 60000 75000 80000 72000 65000 62000 92000 40000 87000 80000
		00007	null	Comp. Sci.	10000

Reject

primary key Constraint

primary key prohibits the insertion of values that already exist for attributes

- Only one primary key constraint per table
- Does not permit null values

Example:

unique Constraint

unique specifies that no duplicate tuples are allowed for attributes

- Any number of unique constraints per table
- Permits null values (if specified without not null)

Example:

check Constraint

check (<cond>) ensures that the check condition is not *false*

- Only checked when the tuple/attribute is inserted/updated
- Accepted if the condition returns *true* or *unknown*

Example:

	de	department		
	dept_name	building	budget	
create table department (dept_name varchar (20), building varchar (15), budget numeric (12,2) check (budget > 0), primery key (dept name));	Comp. Sci. Biology Elec. Eng. Music Finance History Physics	Taylor Watson Taylor Packard Painter Painter Watson	100000 90000 85000 80000 120000 50000 70000	
pimary key (aepi-name)),	Law	Painter	0	
	Chemistry	Watson	null	

foreign key Constraint

foreign key attr references T ensures that the value of attr exists the in the table T

Example: if dept name appears in *instructor*, it must appear in *department*

	instr	uctor			de	partment	
ID	name	dept_name	salary		dept_name	building	budget
10101	Srinivasan	Comp. Sci.	65000		Comp. Sci.	Taylor	100000
12121	Wu	Finance	90000		Biology	Watson	90000
15151	Mozart	Music	40000	\rightarrow ///	Elec. Eng.	Taylor	85000
22222	Einstein	Physics	95000		Music	Packard	80000
32343	El Said	History	60000	\rightarrow	Finance	Painter	120000
33456	Gold	Physics	87000	+	History	Painter	50000
45565	Katz	Comp. Sci.	75000		Physics	Watson	70000
58583	Califieri	History	62000		-		
76543	Singh	Finance	80000	///			
76766	Crick	Biology	72000	///			
83821	Brandt	Comp. Sci.	92000	//			
98345	Kim	Elec. Eng.	80000	/			

.

- foreign key specifies that:
 - a value that appears for a given set of attributes in one relation (*referencing relation*)
 - also must appear for a certain set of attributes in another relation (*referenceed* relation)
- *Referenced* column(s) must be either primary key or have explicit unique constraints
- *Referencing* column(s) form a foreign key

Remarks:

- If the referenced attributes are omitted, then the foreign key references the primary key
 - ${\rm e.g.}$ foreign key (dept_name) references department
- Attributes of foreign key are allowed to be null (if not declared to be not null)
 - In this case the foreign key constraint is said to be satisfied

Foreign Key Constraint Enforcement

- Modification to the *referencing* relation
 - Foreign key does not impose constraints on *deletion*
 - insertion and updates require verifying the foreign key constraints
- Modifications on *referenced* relation
 - Foreign key does not impose constraints on *insertion*
 - *deletion* and *updates* require verifying the foreign key constraints
 - * Option 1: throw an error (default)
 - * Option 2: set referencing attributes to null
 - * Option 3: cascade the changes to referencing attributes

Example: insertion in referencing relation

referencing relation

create table inst	ructor	create table department
(ID name dept_name salarv	varchar (5), varchar (20) not null, varchar (20), numeric (8,2),	(<i>dept_name</i> varchar (20), <i>building</i> varchar (15), <i>budget</i> numeric (12,2), primary key (<i>dept_name</i>));
primary key foreign key ((ID), dept_name) references departme	referenced relation

	instr	uctor			de	partment	
ID	name	dept_name	salary]	dept_name	building	budget
10101	Srinivasan	Comp. Sci.	65000		Comp. Sci.	Taylor	100000
12121	Wu	Finance	90000	\sim //	Biology	Watson	90000
15151	Mozart	Music	40000	$\rightarrow ///$	Elec. Eng.	Taylor	85000
22222	Einstein	Physics	95000		Music	Packard	80000
32343	El Said	History	60000		Finance	Painter	120000
33456	Gold	Physics	87000	$\neq \downarrow \not \Rightarrow$	History	Painter	50000
45565	Katz	Comp. Sci.	75000		Physics	Watson	70000
58583	Califieri	History	62000		-		
76543	Singh	Finance	80000				
76766	Crick	Biology	72000	///			
83821	Brandt	Comp. Sci.	92000	//			
98345	Kim	Elec. Eng.	80000				
98449	James	Law	89000	Reject			
98500	Bob	null	10000	Accept			
98510	Alice	Comp. Sci.	100000	Accept			

Example: deletion in referenced relation

• Option 1: throw an error

instructor

ID	name	dept_name	salary		dept_name	building	budget	~
10101	Srinivasan	Comp. Sci.	65000		Comp. Sei.	Taylor	100000	Reject
12121	Wu	Finance	90000		Biology	Watson	90000	V
15151	Mozart	Music	40000	\rightarrow ///.	Elec. Eng.	Taylor	85000	W/h_V ?
22222	Einstein	Physics	95000		Music	Packard	80000	Comp. Soi is referenced by
32343	El Said	History	60000		Finance	Painter	120000	Comp. Sci. is referenced by
33456	Gold	Physics	87000	+	History	Painter	50000	multiple tuples in instructor!
45565	Katz	Comp. Sci.	75000		Physics	Watson	70000	
58583	Califieri	History	62000					
76543	Singh	Finance	80000	///				
76766	Crick	Biology	72000	///				
83821	Brandt	Comp. Sci.	92000	//				
98345	Kim	Elec. Eng.	80000	Y				

• Option 2: set referencing attributes to null

c

reat	e table in	istructor				create table	departmer	1t	
(1 n d s p fc o	D ame ept_name alary rimary ko preign key n delete s	varchar varchar varchar numerio ey (<i>ID</i>), y (dept_nam set null	• (5), • (20) not nul • (20), c (8,2), e) references	l, departn	ent,	(dept_na building budget primary refe	me varo g varo num v key (dept_ erenced re	thar (20), thar (15), neric (12,2) name));	,
		referencir instr	ng relation uctor			de	partment		
	ID	name	dept_name	salary		dept_name	building	budget	A.
	10101 12121 15151 22222 32343 33456 45565 58583 76543 76564 83821 98345	Srinivasan Wu Mozart Einstein El Said Gold Katz Califieri Singh Crick Brandt Kim	null Finance Music Physics History Physics null History Finance Biology null Elec. Eng.	65000 90000 40000 95000 60000 87000 75000 62000 80000 72000 92000 80000	H	Comp. Sei. Biology Elec. Eng. Music Finance History Physics	Taylor Watson Taylor Packard Painter Painter Watson	100000 90000 85000 80000 120000 50000 70000	Acc ^{cer} Why? The definition of the foreign key specifies set null .

• Option 3: cascade the chagnes to referencing attributes

Deferred Constraint Checking

In some cases due to constraint requirements the first insertion will always violate a constraint:

```
create table dept
1
      (name char(20) primary key,
2
      chair char(30) not null,
3
      foreign key (chair) references prof(name));
4
5
 create table prof
6
      (name char(30) primary key,
7
8
      dept char(20) not null,
      foreign key (dept) references dept(name));
9
```

Since dept and prof reference each other we cannot insert either

In such a case *deferred constraint checking* is necessary

- Check only at the end of a transaction (of multiple insertions)
- Allowed in SQL as an option (go read a manual)

Views

Recall the three-level schema architecture:

- External schema
- Conceptual schema
- Physical schema

A view is like a *virtual* table:

- Defined by a query, which describes how to compute the view contents
- Can be used in queries just like a regular table

• Stored as a query expression by a DBMS, instead of in actual tables

Views are used to hide complexity and data from users for logical data independence. (we can change the schema of actual data, and person still calls same view)

Example:

create view faculty as select ID, name, dept_name from instructor create view physics_fall_2017 as select course.course_id, sec_id, building, room_number from course, section where course.course_id = section.course_id and course.dept_name = 'Physics' and section.semester = 'Fall' and section.year = '2017';

create view physics_fall_2017_watson as
 select course_id, room_number
 from physics_fall_2017
 where building= 'Watson';

Updating Views

Requirements for a view to be updateable:

- $\bullet\,$ The from clause can have only one database relation
- select clause contains only attribute names of the relation

- Does not have any expressions, aggregates, or distinct specification

- any attribute not listed in the select clause can be set to null
- The query does not have a group by or having clause

i.e. an SFW query on a single relation without arithmetic expressions

Note that even if we follow all these there are still some cases where things go wrong:

```
1 create view history_instructors as
2 select *
3 from instructor
4 where dept_name='History'
5 with check option;
```

This will reject insertions that do not satisfy the where clause condition

Example: notice that the tuple created in the actual table has null values

create view instructor_info as
select ID, name, building
from instructor, department
where instructor.dept_name = department.dept_name;
insert into instructor_info

values ('69987', 'White', 'Taylor');

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
69987	White	null	null

Will the tuple be included in the result of the following query?

select * from instructor_info

department

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Electrical Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000
null	Taylor	null

Access Control

Authorize users a combination of privileges (select, insert, update, delete) on relations, views, etc.

- e.g. student can't see other students' grades
- e.g. the instructor can assign/update grades to only their own students

Granting and Revoking Privileges

Privilege list: select, insert, update, delete, all

- grant <privilege list> on <relation or view> to <user list>
- revoke <privilege list> on <relation or view> to <user list>

Note: the grantors must hold the privilege they are granting

Example:

- grant select on department to Amit, Satoshi
- revoke select on department from Satoshi

Roles

Instead of managing privileges on the individual level, we can grant privileges to roles.

Example:

```
1 create role instructor;
2 grant select on takes to instructor;
3 create role dean;
4 grant instructor to dean;
5 grant dean to Satoshi;
```

Transfer of Privileges

Examples:

- grant select on department to Amit with grant option
 - Give Amit select privilege on *department* and allow Amit to grat the privilege to others
- revoke select on department from Amit restrict
 - Revoke select privilege on *department* from Amit
- revoke select on department from Amit cascade
 - Revoke select privilege on *department* from Amit and others granted by Amit

Indexes

An *index* is an auxiliary *persistent* data structure to speed up operations.

- Search tree (e.g. B+-tree), lookup table (e.g. hash table), etc.
- Typically created automatically by the DBMS for primary key and unique attributes
- An index on *R*.*A* can speed up accesses of the form:

- R.A = value

- R.A > value (depending on the index type)

Example:

```
r create index ins_name_index on instructor (name);
```

- 2 create unique index ins_name_index on instructor (name);
- 3 drop index ins_name_index

An error will occur on the second command if *name* is not a candidate key

SQL from a Programming Language

H' browser	network	5	web server and application server database server data server	Jav C++, Que lang Or My Ma	a/Scala, PHP, Python, , Go, etc. estion: how can programming guages access a database server? racle, SQL server, DB2, ySQL, PostgreSQL, ariaDB, etc.
Websites 🗢	Popularity (unique visitors per month) ^[1]	Front-end (Client- + side)	Back-end (Server-side)	Database 🔶	Notes
YouTube	1,100,000,000	JavaScript, <u>TypeScript</u>	C, C++, Java, ^[11] Go ^[12]	Vitess, BigTable, MariaDB ^{[5][13]}	The most popular video sharing site.
Facebook	1,120,000,000	JavaScript, Typescript, Flow	Hack, PHP (HHVM), Python, C++, Java, Erlang, D, ^[6] XHP, ^[7] Haskell ^[8]	MariaDB, MySQL, ^[9] HBase, Cassandra ^[10]	The most visited social networking site.
Amazon	2,400,000,000 ^[19]	JavaScript	Java, C++, Perl ^[20]	DynamoDB, RDS/Aurora, Redshift ^[21]	The most used e-commerce site in the world.
Google ^[2]	2,500,000,000	JavaScript, TypeScript	C, C++, Go, ^[3] Java, Python, Node, PHP	Bigtable, ^[4] MariaDB ^[5]	The most used search engine in the world.
Netflix	223.090.000 (Subscribers, not visitors)	JavaScript	Python, Java ^[39]	NMDB, ^[40] PostgreSQL	The biggest video streaming service in the world.
WordPress.com	240,000,000 ^[36]	JavaScript	PHP ^[37]	MariaDB ^[38]	Website manager software.
Pinterest	250,000,000	JavaScript	Python (Django), ^[33] Erlang, Elixir ^[34]	MySQL, Redis ^[35]	Search engine for ideas.
LinkedIn	260,000,000	JavaScript	Java, JavaScript, ^[30] Scala	Venice ^{[31][32]}	World's largest professional network.
MSN	280,000,000	JavaScript	C# (ASP.NET)	Microsoft SQL Server	An email client, for simple use. Previously known as "messenger", not to be confused with Facebook's messaging platform.
Bing	285,000,000	JavaScript	C++, C#	Microsoft SQL Server, Cosmos DB	Search engine from Microsoft.
eBay	285,000,000	JavaScript, HTML	Java, ^[27] JavaScript, ^[28] Scala ^[29]	Oracle Database	Online auction house.
Twitter	290,000,000	JavaScript	C++, Java, ^[24] Scala, ^[25] Ruby (Ruby On Rails)	MySQL ^[26]	Popular social network.

We have two method to write SQL in a programming language:

• Embedded SQL: example in C

#include <stdio.h></stdio.h>							
EXEC SQL INCLUDE SQLCA;							
main() {							
EXEC SQL WHENEVER SQLERROR GOTO error;	SOL statement						
EXEC SQL CONNECT TO sample;	-JQL STUTEMENT						
EXEC SQL UPDATE Employee							
SET salary = 1.1*salary							
WHERE empno = '000370';							
EXEC SQL COMMIT WORK;							
EXEC SQL CONNECT RESET;							
return(0);							
error:							
<pre>printf("update failed, sqlcode = %ld\n",SQLCODE);</pre>							
EXEC SOL ROLLBACK WORK							
return(-1);							

- SQL queries are hard coded into the program
- Translated into function calls at compile time by preprocessors
- Dynamic SQL: example in Java

– SQL query as a string

- String is submitted as the query and retrieve the result into program varaibles a tuple at a time

- JDBC (Java), ODBC (C/C++/VB), Python (psycopg2), etc.
 - All based on the SQL/CLI (Call-Level Interface) standard
- Application program sends SQL commands to the DBMS at runtime
- Responses/results are converted to objects in the application program

JDBC

JDBC is the Java API for communicating with database systems supporting SQL

- Variety of features for querying and updating data along with retrieving query results
- Able to perform metadata retrieval such as names of tables and names and types of table attributes
- Model for communicating with the database:
 - 1. Open a connection
 - 2. Create a *statement* object
 - 3. Execute queries using the statement object to send queries and fetch results

Example: a breakdown of the JDBC example we saw earlier

- Executing statements:
 - executeQuery() for select
 - * e.g. stmt.executeQuery("select ...")
 - <code>executeUpdate()</code> for <code>update</code>, <code>insert</code>, <code>delete</code>, and <code>create</code> <code>table</code>
 - * e.g. stmt.executeUpdate("insert ..")
- Geting result fields:
 - The following is equivalent if dept_name is the first attribute of the resulting relation
 - * e.g. resultSet.getString("dept_name")
 - * e.g. resultSet.getString(1)

- Dealing with null values:
 - Call get() to get a value of an attribute then to check if null use resultSet.wasNull()

```
- e.g.
1 int a = rs.getInt("a");
2 if (rs.wasNull())
3 Systems.out.println("Got null value");
```

Prepared Statements

A prepared statement is a precompiled SQL statement (precompile once then use many times)

Example:

Example: SQL Query 2 is an examples of a SQL injection where the quote is escaped with another quote:

Using prepared statements would prevent this attack because the input string would have escaped.

Metadata Features

Example: print out the names of types of all columns of a result set (resulting relation)

```
1 ResultSetMetaData rsmd = rs.getMetaData();
2 for(int i = 1; i <= rsmd.getColumnCount(); i++) {
3 System.out.println(rsmd.getColumnName(i));
4 System.out.println(rsmd.getColumnTypeName(i));
5 }
```

Functions and Procedures

Persistent Storage Module (PSM): provides constructs that give SQL almost all the power of a generalpurpose programming language.

```
1 create function func_name(param_decls)
2 returns return_type
3 local_decls
4 func_body;
1 create procedure proc_name(param_decls)
```

```
1 create procedure proc_name(param_dec)
2 local_decls
3 proc_body;
```

```
1 call proc_name(params);
```

Inside the function/procedure body we have:

- Variables: set variable = call func_name(params);
- Assignment using scalar query results: select ... into ...
- Loop constructs: for, repeat until, loop
- Flow control: if-else-then
- Exception handlers (check your DBMS manual)

Examples:

call *dept_count_proc*('Physics', *d_count*);

Remark: DBMS implementations have non-standard versions of the SQL standard syntax (e.g. Oracle, Microsoft SQL Server, PostgreSQL all differ from standard)

Example: PostgresSQL function and procedure:

Triggers

A trigger is an event-condition-action (ECA) rule

- When event occurs, test condition, if condition s satisfied, execute action
- This is a generalization of the integrity condition constraints we saw earlier

Example:

Transit values	Transition variable: stores the values of the inserted row	
create trigger <i>timeslot_check l</i> after insert on <i>section</i> referencing new row as <i>nrow</i>	Event	
for each row		
when (<i>nrow.time_slot_id</i> not in (
select time_slot_id	Condition	
<pre>from time_slot)) /* time_slot_id not present in time_slot */</pre>		
begin		
rollback	Action	
end;		

Trigger Events

- The types of events include:
 - insert on table
 - delete on table
 - update on table

- The action can be executed:
 - after the data is modified
 - before the data is modified

Example:

Granularity

The triggers can be activated:

- for each row:
 - Fires once for each row affected by the triggering event
 - * If no rows where modified then trigger does not fire
 - referencing new row or referencing old row
- for each statement:
 - Fires once per triggering event
 - * Regardless of whether any rows are modified
 - referencing new table or referencing old table
 - * Refers to temporary tables (aka transition tables) containing affected rows
 - Can only be used with after triggers

Statement-level triggers can be more efficient when dealing with SQL statements that update many rows. SQLite only implements *for each row*.

Advanced Aggregations

Ranking

Finds a ranking value for each row.

• Multiple values can have same rank but the next rank will be number of elements before it

- e.g. 1: P8, 2: P2, 2: P5, 4: P9, etc
- Rank of null values can be controlled by:
 - nulls first (default)
 - nulls last can be added after ${\tt desc}$
- Use partition by to perform ranking within partitions of data

Example:

Computing rankings in descending order based on the GPA column within each department

- Multiple rank clauses can occurs in a single select clause
- Ranking is done after applying group by clause or aggregation
- Ranking can be used to find top n results

```
- e.g. find the top 5 ranking students based on GPA
```

```
select *
from (select ID, rank() over (order by (GPA) desc) as s_rank
from student_grades)
where s_rank <= 5</pre>
```

- More general than limit n clause, since it allows top n within each partition

Windowing

Compute an aggregation function over a range of tuples

Examples:

Recursion

We perform recursion in SQL in a simular way to regular programming:

- Fixed point: there is no further changes in the result of the recursive query evaluation
- Reaching the fixed point indicates we can terminate the recursive query

Example: union our current query with the past one until union no longer adds anything

Example: remove courses we have already found

Data Modeling

The goal is to be able to convert a written specification into a database schema

- Step 1: understand the real-world domain being modeled
 - Specify these considerations into an entity-relationshiop (E-R) model
- Step 2: translate this into the data model of the DBMS
 - Create the relational model

There are two major pitfalls that should be avoided

- Redundancy: storing multiple copies of the same data
 - Inconsistencies will occur if all the copies of the data is not updated at the same time
- Incompleteness: unable to store all valid data
 - We want our database to be complete with all the data it should have

Entity-Relationship Model (E-R Model)

E-R diagrams were proposed to help with designing database schema and described the world in terms of:

- Entities
- Relationships
- Attributes on entities and relationships

Entity Set

- *Entity*: is an object that exists and is distinguishable from other objects (an instance)
- Entity set: set of entities of the same type that share the same properties (or attributes)
- An entity is represented its *attributes* which are properties all members of the entity set possess
- Subset of the attributes form a *primary key* of the entity set

An entity set is represented using:

- Each rectangle is its own entity set
- Attributes are listed inside the rectangle
- Underline indicates the primary key attributes

Example:

A specific entity of the *instructor* entity set could be (ID: 1, name: Joe, salary: \$8)
Relationship Set

- Relationship: an association among multiple entities
- Relationship Set: mathematical irelation among $n \ge 2$ entities

– Let E_1, \ldots, E_n be entity sets, then a relationship set is a subset of

$$\{(e_1, \ldots, e_n) : e_1 \in E_1, \ldots, e_n \in E_n\}$$

where (e_1, \ldots, e_n) is a relationship instance

Diamonds are used to represent the relationship set and an attribute can also be associated.

Examples:

• Relationship set advisor denotes associations between students and instructors

76766 Crick	98988	Tanaka
45565 Katz -	12345	Shankar
10101 Srinivasan	00128	Zhang
98345 Kim	76543	Brown
76543 Singh	76653	Aoi
22222 Einstein	23121	Chavez
instructor	44553	Peltier
	sti	ıdent

– In E-R notation the relationship set is denoted:

• Relationship set advisor can have an attribute

76766 Crick	98988 Tanaka
45565 Katz	3 May 2008 12345 Shankar
10101 Srinivasan	10 June 2007 12 June 2006 00128 Zhang
98345 Kim	6 June 2009 76543 Brown
76543 Singh	30 June 2007 76653 Aoi
22222 Einstein	31 May 2007 23121 Chavez
instructor	44553 Peltier
	student

– In E-R notation the relationship set is denoted:

Roles

An entity set may participate more than once in a relationship set

• Each occurrence fo an entity set plays a *role* in the relationship

Example: the labels course_id and prereq_id are called *roles*

Relationship Set Degree

- Binary Relationship:
 - Involves exactly two entity sets (degree two)
 - Most relationship sets in a database system are binary
- Non-binary Relationship:
 - On occasion it is more convenient to represent relationships as non-binary
 - e.g. students work on research projects under the guidance of an instructor

proj guide is a ternary relationship (degree three) between instructor, student, and project

Attributes

The types of attributes:

- *simple* and *composite* attributes
 - Whether the attribute can be divided into other attributes
 - e.g. *address* is a composite attribute because it could consist of the attributes *street*, *city*, *state*, and *postal code*
- single-valued and multivalued attributes
 - e.g. if an instructor can be multiple phone numbers then $phone_numbers$ is a multivalued attribute
- *derived* attributes
 - Attributes that can be computed from other attributes
 - e.g. age attribute can be derivated when required from date_of_birth

Example:

Mapping Cardinality Constraints

Express the number of entities that can be assocated from one set to another via a relationship set. For binary relationship sets we have the mapping cardinality can be:

Note: some elements in A or B could be not mapped to any elements in other set

Example: in E-R notation

- Arrow: at most one entity from this entity set in the relationship
- Line: any number of entities from this entity set in the relationship

Total and Partial Participation

- Total participation (double line)
 - Every entity in this entity set must participate in at least one relationship
- Partial participation (single line)
 - Some entities may not participate in any relationship in the relationship set

Example:

- Every student must alwe an associated instructor (participation of *student* in *advisor* is total)
- Some instructors may not advise students (participation of *instructor* in *advisor* is partial)

General Cardinality Constraints

We denote a general cardinality constraint as: $\ell \dots h$

- This denotes the minimum ℓ and maximum h number of relationships a entity participates in
 - $-\ell = 0$: partial participation
 - $-\ell = 1$: total participation
 - -h = 1: at most one relationship
 - -h = *: not limit of relationships

Example:

- An instructor can advise zero or more students
- Each student must have exactly one advisor

Primary Keys

- Primary key for entity sets is a set of attributes that suffice to distinguish entities from each other
- Primary key for binary relationship depends on the mapping cardinality of relationship set
 - one-to-one: primary key of either one of the participating entity sets
 - one-to-many or many-to-one: primary key of the many side
 - many-to-many: union of primary keys of the participating entity sets

Example:

Weak Entity Sets and Identifying Relationships

Definition: a *weak entity set* is an entity set whose existence is dependent on some entity called its *identifying entity* (an entity set that is not a weak entity set is called a *strong entity set*).

Example: *course* is the identifying entity of the *section* weak entity set:

The *identifying relationship* associates the weak entity set with its identifying entity set

- Identifying relationship is a many-to-one from the weak entity set to the identify entity set
- Participation of the weak entity set in the identifying relationship is total
- Identifying relationship set should not have any attributes
 - Instead the attributes should be associated with the weak entity set

Example: E-R diagram of a weak entity set (double outline for identifying relation and weak entity set)

The attribute course_id is not stored in the *section* but is provided by sec_course

Redundant Attributes in Entity Sets

General steps to design an E-R diagram:

- 1. Identify entity sets
- 2. Add attributes to entity sets
- 3. Form relationship sets between the various entity sets
- 4. Remove redundant attributes from entity sets

Example:

- 1. Identify entity sets: instructor and department
- 2. Added attributes:

- instructor: <u>ID</u>, name, dept_name, salary
- department: dept_name, building, budget
- 3. Formed relationship: inst dept relating instructor and department
- 4. The attribute *dept_name* in *instructor* is redundant due to the *stud_dept* relationship so we would remove it to get the entity sets:
 - instructor: <u>ID</u>, name, salary
 - department: dept_name, building, budget

Due to the relationship this is basically the same as before.

Specialization and Generalization

- *Specialization*: general groups into more specific groups
 - Create general purpose entity sets, then provide specializations of them
- Generalization: specific groups into more general groups
 - Begin with specific entities, then find common attributes and generalize them

Example: a university employee could be either a instructor or a secretary

- Instructors and secretaries both have: ID, name, street, city, salary
- Instructors also have: rank (e.g. associate, full, etc)
- Secretaries also have: hours_per_week

- Superclass: the higher-level entity sets used to represent common attributes
- Subclass: lower-level entity sets used to represent specialized attributes
- Superclass is connected to subclasses using a hollow-headed arrow
- Lower-level entity sets *inherit attributes and relationships* of higher-level entity sets

Specialization constraints:

- Disjoin specialization: entity can be member of at most one lower-level entity sets
- Overlapping specialization: entity can be member of many lower-level entity sets

Example: if one hollow arrow has many lower-level entity sets then the specialization is disjoint

Completeness constraints:

- Total specialization:
 - Every higher-level entity **must** be a member of at least one lower-level entity set
 - e.g. a person must be either an employee or a student (not allowed to be neither)
- Partial specialization:
 - Every higher-level entity is **not required** to a member of some lower-level entity set (default)
 - e.g. not every employee is an instructor or a secretary (allowed to be neither)

Example: total specialization constraint is added by annotating specialization arrow(s)

Disjoint specialization: an employee can be an

Partial specialization: not every employee is an

instructor or a secretary, but not both.

employee or a student.

instructor or a secretary.

Overlapping specialization: a person **can be** an employee and a student. Partial specialization: **not every** person is an employee or a student. Disjoint specialization: an employee **can be** an instructor or a secretary, but not both. Total specialization: every employee **has to be** an instructor or a secretary.

Aggregation

Relationships can be viewed as a higher-level entity set

• Expressing an relationship where another relationship acts as a component entity set

Example: each instructor guiding a studnet on a project is required to fill a monthly evaluation report

Entity-Relationship Design Issues

• Common mistake 1:

- Using a primary key of an entity set as an attribute of another entity set, instead of using a relationship
- attribute dept_name is redundant in *student*
- Common mistake 2:

- Using a relationship with a single-valued attribute when we require a multivalued attribute
- In the given E-R diagram each student-section pair can only have one assignment
- The corrected version allows for a section to have multiple assignments:

• Common mistake 3:

- Using the primary-key attributes of the related entity sets as attributes of the relationship set
- The corrected version could be either of the following two:

Entity Set vs Relationship Set

It is not always clear when an object is best expressed by an entity set or a relationship set.

• One guideline is thinking about whether it describes an action that occurs between two entities

Example: takes can be viewed as either a relationship set or entity set

Treating takes as a relationship set

tot_cred

E-R Diagrams Summary

To create an E-R diagram we have 6 steps

- 1. Recognize entity sets
- 2. Recognize relationship sets and participating entity sets
- 3. Recognize attributes of entity and relationship sets

year

- 4. Define relationship types and existence dependencies
- 5. Define general cardinality constraints, keys, and discriminators

6. Draw diagram

For each step, maintain a log of assumptions motivating the choices and of restrictions imposed.

Example: a bookstore's system

- Each book in this system has a unique ISBN in addition to the attributes name, genre, the number of pages, and the number of copies in the bookstore.
- Each book is written by one or more authors and published by a publisher.
- Authors have unique author ID, name, nationality, and birth year. An author can write more than one book.
- Each publisher is identified by a publisher ID, and also has name and address. Some publishers can be owned by another publisher. And, a publisher can own more than one publisher.
- Each customer has unique customer ID, name, and phone number. Customers may have customer cards, each card having a card ID and points attributes. Customer cards cannot be identified uniquely and they can exist in the system only with customers.
- Each sale in the bookstore is made by a customer, and identified by a sale ID, and also has the date and total price. Each sale is associated with one or more books, specifying the number of copies sold for each book.

E-R Diagram to Relational Tables

Intuitively, we perform the following translation:

- Each entity set maps to a new table
- Each relationship set maps to a new table
- Each simple and single-valued attribute maps to a new table column

Representation of Strong Entity Sets

Method: the entity set E with attributes a_1, \ldots, a_n translates to table E with attributes a_1, \ldots, a_n

- Entities of E correspond to rows in table E
- Primary key of an entity set is the primary key of the table

Example:

For complex attributes:

- Composite attributes are flattened out by creating a separate attribute for each component
- Multivalued attribute M of an entity E is represented by a separate table EM consisting of the primary key A of E and M, then foreign key constraint of EM.A references E.A is added to EM

Example:

instructor	
<u>ID</u> name first_name middle_initial last_name	instructor (<u>ID</u> , first_name, middle_initial, last_name, street_number, street_name, apt_number, city, state, postal_code, date_of_birth)
address street street_number street_name apt_number city	<i>instructor_phone</i> (<u>ID</u> , <u>phone_number</u>) Foreign key constraints: instructor_phone.ID references instructor.ID
state zip { phone_number } date_of_birth age ()	Derived attributes, e.g., age(), are represented as stored procedures or functions

The derived attributes (e.g. age()) are represented as stored procedures or functions

Representation of Relationship Sets

Method: A many-to-many relationship set R translates to table R

- Columns of table R should include:
 - Primary keys of the two participating entity sets
 - Descriptive attributes of the relationship set R
- Primary key and foreign key constraints:
 - PK: primary keys of table R is the primary keys of relationship set R
 - * primary keys of the two participating entity sets
 - FK: 2 foreign key constraints referencing the primary keys of the 2 participating entity sets

Example:

advisor = (<u>student_ID</u>, instructor_ID)

Foreign key constraints: advisor.student_ID references student.ID advisor.instructor_ID references instructor.ID

Method: many-to-one or one-to-many relationship sets are represented through adding the primary key A of the *one* side to the *many* side

- If participation is total on the many then the added attribute(s) A is not null
- Foreign key constraint: added attribute(s) A of many side references primary key A of one side

Representation of Weak Entity and Relationship Sets

Method: the weak entity set WE translates to table WE

- Columns of table WE should include:
 - All attributes of the weak entity set
 - Primary key A of the identifying (strong) entity set SE
- Primary key and foreign key constraints:
 - PK: discriminator attributes of WE plus primary key A of identifying entity set SE
 - FK: WE.A references SE.A

Example:

section(course_id. sec_id. semester. year)

Foreign key constraint: section.course_id references course_id

Note: the identifying relationship for a weak entity does not require any translation (i.e. *sec_course* does not need any translation)

Representation of Specialization and Generalization

Higher-level entity set:

• Person with attributes ID, name, street, and city

Lower-level entity set:

- Person can be an employee with additional attribute salary
- Person can be student with addition attribute tot_credits

Then the specialization is represented by the following tables:

- Person(*ID*, name, street, city)
- Employee(<u>*ID*</u>, salary)
- Student(<u>*ID*</u>, tot_cred)

Key constraints:

- FK: Employee.ID references Person.ID
- FK: Student.ID references Person.ID

If the speicalization is *disjoint* and *total* then the tables would be

- Person(<u>ID</u>, name, street, city, salary)
- Student(<u>*ID</u></u>, name, street city, tot_cred)</u>*

Aggregation

Method: treat the aggregation like an entity set whose primary key is the primary key of the aggregated relationship set

Example:

Function Dependencies (FD)

Definition: let R be a relational schema and $X, Y \subseteq R$ be a set of attributes. The functional dependency

 $X \to Y$

holds on R if whenever an instance of R contains two tuples t and u such that t[X] = u[X] then t[Y] = u[Y].

- We say that that X functionally determines Y in R
- Note both t.X and t[X] hold the same meaning

 $t[A_1,\ldots,A_k]$ is a projection of r onto attributes A_1,\ldots,A_k i.e. the tuple $(t.A_1,\ldots,t.A_k)$

Example: for the relational schema EmpProj(SIN, PNum, Hours, EName, PLoc, Allowance)

- If SIN determines employee name then: $SIN \rightarrow EName$
- If project number determines project name and location then: $PNum \rightarrow PName, PLoc$
- If allowance is the same for number of hours at the same location: $PLoc, Hours \rightarrow Allowance$
- Trivial FD: SIN, $EName \rightarrow EName$

Functional Dependencies and Keys

Recall the defined keys:

- superkey: set of attributes such that no two tuples have the same values for the attributes
- *candidate key*: minimal superkey
- primary key: candidate key chosen by the database designer

Functional dependencies and keys:

- If $K \subseteq R$ is a superkey for R then dependency $K \to R$ holds on R
- If dependency $K \to R$ holds on R then $K \subseteq R$ is a *superkey* for relation schema R- Needs assumption that R does not contain duplicate tuples

Functional Dependencies Implication

Armstrong's Axioms:

• *Reflexivity*:

 $X\subseteq X \quad \Longrightarrow \quad X \to Y$

• Augmentation:

 $X \to Y \implies XZ \to YZ$

• Transitivit:

 $X \to Y, \ Y \to Z \implies X \to Z$

These axioms are:

- Sound (anything derived from F is in F^+)
- Complete (anything in F^+ can be derived from F)

Additional rules can also be derived:

• Union:

 $X \to Y, \ X \to Z \implies X \to YZ$

• Decomposition:

Example: prove SIN, PNum \rightarrow Allowance using the following set of FDs

 $F = \{SIN, PNum \rightarrow Hours$ SIN \rightarrow EName PNum \rightarrow PName, PLoc PLoc, Hours \rightarrow Allowance}

- 1. SIN, PNum \rightarrow Hours ($\in F$)
- 2. PNum \rightarrow PName, PLoc ($\in F$)
- 3. PLoc, Hours \rightarrow Allowance ($\in F$)
- 4. SIN, PNum \rightarrow PNum (reflexivity)
- 5. SIN, PNum \rightarrow PName, PLoc (transitivity, 4 and 2)
- 6. SIN, PNum \rightarrow PLoc (decomposition, 5)
- 7. SIN, PNum \rightarrow PLoc, Hours (union, 6 and 1)
- 8. SIN, PNum \rightarrow Allowance (transitivity, 7 and 3)

Functional Dependencies Attribute Closure

Definition: closure Z^+ of attributes Z in the relation R with respect to the set of FDs F is the set of all attributes $\{A_1, \ldots, A_t\}$ functionally determined by Z (i.e. $Z \to A_1 \cdots A_t$)

Algorithm to compute the closure: Compute $Z^+(Z, F)$:

- Start by setting $Z^+ \leftarrow Z$
- If $X \in Z^+$ and $X \to Y \in F$ then update $Z^+ \leftarrow Z^+ \cup Y$
- Repeat until no new attributes can be added

Example: Compute Z^+ ({PNum, Hours}, F) with

 $F = \{SIN \rightarrow EName$ PNum \rightarrow PName, PLoc PLoc, Hours \rightarrow Allowance}

- {PNum, Hours}
- {PNum, Hours, PName, PLoc} (PNum \rightarrow PName, PLoc)
- {PNum, Hours, PName, PLoc, Allowance} (PLoc, Hours \rightarrow Allowance)

Given a relation R and set of FDs F we Compute $X^+(X, F)$

- $\bullet \ Y \subseteq X^+ \iff X \to Y \in F$
- $R \subseteq X^+ \iff X$ is a superkey

- To verify that X is a minimal superkey we need to check attribute closure of its proper subset

Schema Refinement

After designing a E-R diagram and converting that into a relational schema we need to determine that schema has any issues.

A good relational database schema should have independent facts in separate tables:

"Each relation schema should consist of a *primary key* and *set of mutually independent attributes*"

This is achieved by transforming a schema into a *normal form*.

Lossless-Join Decomposition

Definition (Schema Decomposition): Let R be a relation schema (set of attributes). The collection $\{R_1, \ldots, R_n\}$ of relation schemas is a *decomposition* of R if

$$R = R_1 \cup \dots \cup R_n$$

Example: consider the following decomposing of Marks into SGM and AM

Marks				SGM			AM	
Student	Assignment	Group	Mark	Student	Group	<u>Mark</u>	Assignment	<u>Mark</u>
Ann	A1	G1	80	Ann	G1	80	A1	80
Ann	A2	G3	60	Ann	G3	60	A2	60
Bob	A1	G2	60	Bob	G2	60	A1	60

While this is a valid decomposition notice that the natural join of SGM and AM has spurious tuples:

Student	Assignment	Group	Mark
Ann	A1	G1	80
Ann	A2	G3	60
Ann	A1	G3	60
Bob	A2	G2	60
Bob	A1	G2	60

We are therefore losing information if we replace Marks with SGM and AM (lossy decomposition)

Definition (Lossless Decomposition): A decomposition $\{R_1, R_2\}$ of R is *lossless* if and only if the common attributes of R_1 and R_2 form a superkey for either schema

$$R_1 \cap R_2 \to R_1 \quad \text{or} \quad R_1 \cap R_2 \to R_2$$

(also called a lossless-join decomposition)

Example: we can losslessly decompose R into R_1, R_2, R_3

	Supp	lied Item	s			
R	<u>Sno</u>	Sname	City	<u>Pno</u>	Pname	Price
	S1	Magna	Ajax	P1	Bolt	0.50
	S 1	Magna	Ajax	P2	Nut	0.25
	S 1	Magna	Ajax	P3	Screw	0.30
	S2	Budd	Hull	P3	Screw	0.40

Dependency Preservation

Definition (Dependency-Preserving Decomposition): Given a schema R and a set of functional dependencies \mathcal{F} , a decomposition:

$$D = \{R_1, \ldots, R_n\}$$

of R is dependency preserving if there is an equivalent set of functional dependencies \mathcal{F}' , none of which is interrelational in D.

Example: a table for a company database could be

R			FD1: Proj \rightarrow Dept
Proj	Dept	Div	FD2: Dept \rightarrow Div
			FD3: Proj \rightarrow Div

We are given two decompositions:

- $D_1 = \{R1\{\text{Proj, Dept}\}, R2\{\text{Dept, Div}\}\}$
- $D_2 = \{R1\{\text{Proj, Dept}\}, R3\{\text{Proj, Div}\}\}$

Of these two decompositions they are both lossless but it is actually D_1 that is better

- D_1 lets us test FD1 on table R1 and FD2 on table R2. If both are satisfied then FD3 is satisfied
- D_2 lets us test FD1 on table R1 and FD3 on table R3. However FD2 is an *interrelational constraint* as testing it requires joining tables R1 and R3

Boyce-Codd Normal Form (BCNF)

Definition (BCNF Informal): relation schema R is in BCNF if and only if any group of attributes in R that functionally determines any other attributes in R, functionally determines all attributes in R.

Schema R is in BCNF (w.r.t. \mathcal{F}) if and only if whenever $(X \to Y) \in \mathcal{F}^+$ and $XY \subseteq R$ then either

- $(X \to Y)$ is trivial (i.e. $Y \subseteq X$), or
- X is a superkey of R

Database schema $\{R_1, \ldots, R_n\}$ is in BCNF if each relation schema R_i is in BCNF.

To convert to BCNF:

- Find a BCNF violation: non-trivial FD $X \to Y$ in \mathcal{F}^* of R where X is not a super key of R
- Decompose R into R_1 and R_2 where

$$R_1 = X \cup Y$$
 and $R_2 = X \cup Z$

where Z contains all attributes of R that are neither in X nor Y

• Repeat until there are no more BCNF violations

Example:

BCNF guarantees:

- Lossless join decomposition
- No redundancy

Not necessarily dependency preserving. Take $R = \{A, B, C\}$ and $\mathcal{F} = \{AB \to C, C \to B\}$

Notice that $AB \to C$ is interrelational and cannot be tested directly.

3NF produces lossless join decomposition and is dependency preserving, but may have redundancy.

Third Normal Form (3NF)

Definition: schema R is in 3NF (w.r.t. \mathcal{F}) if and only if whenever $(X \to Y) \in \mathcal{F}^+$ and $XY \subseteq R$ then

- $(X \to Y)$ is trivial (i.e. $Y \subseteq X$), or
- X is a superkey of R, or
- each attribute in Y X is part of a candidate key of R

Database schema $\{R_1, \ldots, R_n\}$ is in 3NF if each relation schema R_i is in 3NF.

The first two conditions are the same as BCNF while the third condition is new (3NF is looser than BCNF)

To convert to 3NF:

- Initialize the decomposition with an empty set
- Find a minimal cover for F, let it be F^*
- For every $(X \to Y) \in F^*$, add relation $\{XY\}$ to the decomposition

• If no relaion contains a candidate key for R, then compute a candidate key K for R and add $\{K\}$ to the decomposition

Example:

- $R = \{$ Sno, Sname, City, Pno, Pname, Price $\}$
- Functional dependencies:

Sno \rightarrow Sname, City Pno \rightarrow Pname Sno, Pno \rightarrow Price Sno, Pname \rightarrow Price

• Minimal cover:

$\mathrm{Sno} \to \mathrm{Sname}$	$R1 = {Sno, Sname}$
$\mathrm{Sno} \to \mathrm{City}$	$R2 = \{Sno, City\}$
$\mathrm{Pno} \to \mathrm{Pname}$	$R3 = \{Pno, Pname\}$
Sno, Pname \rightarrow Price	$R4 = \{Sno, Pname, Price\}$

• Add relation for candidate key $R_5 = {$ Sno, Pno $}$

Minimal Cover

Definition: a set of dependencies F is *minimal* if

- Every right-hand side of an dependency in F is a single attribute
- There does not exist $X \to A$ in F, such that the set

$$F - \{X \to A\}$$

is equivalent to F (no redundant FD in F)

• There does not exist $X \to A$ and $Z \subset X$, such that set

$$(F - \{X \to A\}) \cup \{Z \to A\}$$

is equivalent to F (no extra attributes on left hand side of FD in F)

To compute the minimal cover for F we have three steps (repeat *each* step until F is no longer updated)

- Replace $X \to YZ$ with $X \to Y$ and $X \to Z$
- Remove $X \to A$ from F if $A \in \text{Compute}X^+(X, F \{X \to A\})$
- Remove A from left hand size of $X \to B$ in F if $B \in \text{Compute}X^+(X \{A\}, F)$

Example: $R = \{$ Sno, Sname, City, Pno, Pname, Price, Ptype $\} F$ includes

- FD1: Sno \rightarrow Sname, City FD2: Pno \rightarrow Pname FD3: Sno, Pno \rightarrow Price FD4: Sno, Pname \rightarrow Price FD5: Pno, Pname \rightarrow Pty
- Fail condition 1: FD1
- Fail condition 2: FD2 and FD4 implies FD3 (remove FD3)
- Fail condition 3: FD5 can be replaced by FD5' Pno \rightarrow Ptype

Then the minimum cover is:

```
Sno \rightarrow Sname
Sno \rightarrow City
Pno \rightarrow Pname
Sno, Pname \rightarrow Price
Pno \rightarrow Pty
```

Transactions

Concurrency and Power Failure

The database is a *shared* resource that the accessed by many users and processes *concurrently*.

Due to the database being a shared resource there can be problems due to concurrency or power failure.

Problems caused by *concurrency*:

- *Inconsistent reads*: if two applications read and write concurrently then it is possible to read halfway through an update operation
- Lost updates: if two applications write to the time place concurrently then it is possible to *lose* one of the updates
- *Non-repeatable reads*: if two applications read and write concurrently then it is possible to read same updated values and some old values

Overall we run into concurrently problems when between two applications:

- one *reads* and another *writes* to the database
- both *write* to the database

Don't need to worry about when two applications *only* read from the database.

Problems caused by *failure*:

- If system crashes *while* processing update then only some tuples are updated, but not all
- If system crashes *after* update but before the they are made permanent (e.g. written to disk) then the changes may not survive

• If system fails between two updates, then only one may complete while the other disappears

We need to worry about *partial* results of application on the database when a crash occurs

Need to make sure that when applications are completed the changes to the database can survive crashes.

SQL Transaction

A transaction is automatically started when a user executes a SQL statement:

- Subsequent statements in the same session are executed as part of the same transaction
- Statements see changes made by earlier ones in the same transaction
- Statements in other concurrently running transactions do not

There are two SQL commands to terminate a transaction:

- commit: make its effects final and visible to subsequent transactions
- rollback: abort the transaction by undoing its effects

A new transaction then begins with the application's next SQL command after the commit or rollback.

The fine print:

- Performing any schema operation (e.g. create table) will commit the current transaction
 - schema is usually fixed and it is extremely difficult to undo a schema operation
- Most DBMS support an autocommit feature, which automatically commits every single statement

 can be turned off/on through the API (but may be on by default)
- Statements can be enclosed with begin transaction and commit transaction to explicitly specify a transaction

ACID

A *transaction* is a sequence of database operations that is ACID:

- Atomic: operations of this transaction are exected all-or-nothing (never half done)
 - Achieved using logging (to support undo)
- *Consistency*: assume all database constraints are satisfied at start of transaction and are satisfied at the end of the transaction
 - Onus on the user to define that is consistent
 - If inconsistency does arise either abort or attempt to fix before commit
- Isolation: transactions must behave as if they are exected in complete isolation from each other
 - Achieved using locking, multi-version concurrent control, etc.
 - DBMS executes transaction using a *serializable schedule* for extra performance
 - * Operations from different transaction can interweave and execute concurrently
 - * However schedule guarantees the same effects as if transactions where executed serially

- *Durability*: if the DBMS crashes after a transaction commits, all effects of the transaction must remain in the database when the DBMS comes back up
 - Achieved using logging (to support redo)

We will not study these in detail but they will be fully covered in CS448

Constraint Conflicts in SQLite

SQLite has on conflict which is a non-standard clause that allows us to specify how to handle constraint conflicts:

- Can be applied to constraints: unique, non-null, check, primary key (but not foreign key)
- Options for actions to perform when constraint violation occurs: abort, fail, ignore, replace, rollback

Example: the following produces the same results

(3, 'Saw', 11.34);

```
CREATE TABLE Products(
  ProductId INTEGER PRIMARY KEY,
  ProductName VARCHAR(15) NOT NULL ON CONFLICT IGNORE,
  Price NUMERIC(5,2)
);
INSERT INTO Products VALUES
 (1, 'Hammer', 9.99),
 (2, NULL, 1.49),
 (3, 'Saw', 11.34);
CREATE TABLE Products(
  ProductId INTEGER PRIMARY KEY.
  ProductName VARCHAR(15) NOT NULL,
  Price NUMERIC(5,2)
);
INSERT OR IGNORE INTO Products VALUES
 (1, 'Hammer', 9.99),
 (2, NULL, 1.49),
```

Examples:

• ignore: skips the row that violates the constraint, and continues processing subsequent rows

sqlite> CREATE TABLE Products(ProductId INTEGER PRIMARY KEY, ProductName VARCHAR(15) NOT NULL,					
Price NUMERIC(5,2)					
);					
sqlite> INSERT OR IGNORE INTO Products VALUES					
(1, 'Hammer', 9.99),					
(2, NULL, 1.49), ←					
(3, 'Saw', 11.34),					
(4, 'Wrench', 37.00),					
(5, 'Chisel', 23.00),					
(6, 'Bandage', 120.00);					
sqlite> SELECT * FROM Products;					
1 Hammer 9.99					
3 Saw 11.34					
4 Wrench 37					
5 Chisel 23					
6 Bandage 120					

The row violating the constraint was skipped.

- fail: aborts the current SQL statement with an error
 - Does not undo prior change of the statement that failed
 - Does not end the transaction

- abort: (the default option) aborts the current SQL with an error
 - Undo the statement that failed but keeps the statements before
 - Does not end the transaction

<pre>sqlite> DELETE FROM Products; sqlite> INSERT OR ABORT INTO Products VALUES (1, 'Hammer', 9.99), (2, NULL, 1.49), (3, 'Saw', 11.34), (4, 'Wrench', 37.00), (5, 'Chisel', 23.00), (6, 'Bandage', 120.00); Runtime error: NOT NULL constraint failed: Products.ProductName (19) sqlite> SELECT * FROM Products; sqlite></pre>	An error raised, and none of the rows got inserted.
<pre>sqlite> DELETE FROM Products; sqlite> BEGIN TRANSACTION; sqlite> INSERT OR ABORT INTO Products VALUES (1, 'Hammer', 9.99); sqlite> INSERT OR ABORT INTO Products VALUES (2, NULL, 1.49); Runtime error: NOT NULL constraint failed: Products.ProductName (19) sqlite> INSERT OR ABORT INTO Products VALUES (3, 'Saw', 11.34); sqlite> INSERT OR ABORT INTO Products VALUES (3, 'Saw', 11.34); sqlite> INSERT OR ABORT INTO Products VALUES (4, 'Wrench', 37.00); sqlite> INSERT OR ABORT INTO Products VALUES (5, 'Chisel', 23.00); sqlite> INSERT OR ABORT INTO Products VALUES (6, 'Bandage', 120.00); sqlite> COMMIT; sqlite> SELECT * FROM Products; 1 Hammer 9.99 3 Saw 11.34 4 Wrench 37 5 Chisel 23</pre>	An error raised, but the transaction was still alive

- replace:
 - unique or primary key: delete pre-existing rows causing the violation (before the current row) then continue continue normally
 - not null: replace null values with the default one (if no default value then abort)
 - check: does same as abort

• rollback: aborts current SQL statement with an error then rolls back the current transaction

sqlite> DELETE FROM Products; sqlite> BEGIN TRANSACTION; sqlite> INSERT OR ROLLBACK INTO Products VALUES (1, 'Hammer', 9.99); sqlite> INSERT OR ROLLBACK INTO Products VALUES (2, NULL, 1.49); Runtime error: NOT NULL constraint failed: Products.ProductName (19)	An error raised, and the transaction was rolled back.
Sqlite> COMMIN; Runtime error: cannot commit - no transaction is active sqlite> SELECT * FROM Products; sqlite>	The transaction had been terminated.