PMATH 336: Introduction to Group Theory with Applications University of Waterloo Instructor: Andrew Zucker Spring 2023

Andrew Wang

Table of Contents

Introduction to Groups	4
Functions Review	4
Semigroup, Monid, Group	
Semigroup	
Monoid	
Group	
Basic Properties of Groups	
Cancellative	
Order	
Subgroups	
Examples of Groups	
Symmetric Group	-
Dihedral Group	
Additive Group of Integers Modulo $n \dots $	
Multiplicative Group of Integers Modulo n and Unit Group \ldots	
Free Group	
Infinite Dihedral Group	
Subgroups and Generators	
Subgroup Tests	
Generators	
Center, Centralizer, Commutator Subgroups	15
Isomorphisms, Cyclic Groups, Permutation Groups	18
Isomorphisms	
-	
Cyclic Groups	
Euler's Totient Function	
Permutation Groups	
Permutation Cycles	
Alternating Groups	
Cayley's Theorem	27
Automorphisms, Conjugation, Normality, Cosets	28
Automorphisms	
Conjugation	
Homomorphism	
Kernel	
Normality	
Cosets	
Lagrange's Theorem	
Orbit-Stabilizer Theorem	35
Products	38
Direct Products of Cyclic Groups	
Gauss's Theorem	
Isomorphism of Products	
	59
Factor Maps	40
First Isomorphism Theorem	
Normalizer	
	=-

Finite Abelian Groups	44
Group Actions Polya-Burnside	49 51

Introduction to Groups

Functions Review

Definition: given two sets X and Y let $f : X \to Y$ be a function

- f is an assignment (mapping) to each possible input $x \in X$ to some output $f(x) \in Y$
- X is the *domain* of f
- Y is the *codomain* of f
- $f[X] := range/image \text{ of } f = \{f(x) : x \in X\}$

The function $f: X \to Y$ is called:

• **Injective** (one-to-one): when $\forall x_1, x_2 \in X$

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

• Surjective (onto): when $\forall y \in Y$

$$\exists x \in X \text{ where } f(x) = y$$

• **Bijective**: when *f* is both injective and surjective

Recall: if we are negating a statement we switch \forall to \exists and vice versa

Definition: for sets X, Y, Z the *composition* of functions $f : X \to Y$ and $g : Y \to Z$ is the function

$$g \circ f : X \to Z$$
 given by $(g \circ f)(x) = g(f(x))$

Theorem: function composition is assocative

• given sets W, X, Y, Z along with the functions $f: W \to X, g: X \to Y, h: Y \to Z$ we have

 $(h\circ g)\circ f=f\circ (g\circ f)$

Proof: two functions are equal when they produce the same output for all inputs

• Select an arbitrary $w \in W$ then

$$((h \circ g) \circ f)(w) = (h \circ g)(f(w)) = h(g(f(w)))$$
$$(h \circ (g \circ f))(w) = h((g \circ f)(w)) = h(g(f(w)))$$

• Since $(h \circ g) \circ f = h \circ (g \circ f)$ for arbitrary inputs, hence they are equal

Definition: given a set X, let X^X denote the set of functions of the form $f: X \to X$

Notice that: $f, g \in X^X \implies g \circ f \in X^X$

Semigroup, Monid, Group

Definition: Let S be a set, a *binary operation* on S is a function $b: S \times S \to S$

- Takes two elements from S as input and produces a element from S as output
- Written multiplicatively if given $s, t \in S$ then the output of b(s, t) is denoted $s \cdot t$ (or just st)
- Written additively if given $s, t \in S$ then the output of b(s, t) is denoted s + t

Thus for an operation to be a binary operation it must be closed under the set it acts on.

The following is a informal progression of increasing structure towards a group:

- Magma: set equipped with a single binary operation (closed by definition of binary operation)
- Semigroup: magma except the binary operation is also associative
- Monoid: semigroup except that the set contains an identity element
- Group: monoid except each element of the set has an inverse

Semigroup

Definition: a semigroup is a set S equipped with an associative binary operation, denoted (S, \cdot)

• The binary operation on S is associative if $\forall s, t, u \in S$

$$s \cdot (t \cdot u) = (s \cdot t) \cdot u$$

- $e_L \in S$ is a *left identity* of S if for every $t \in S$, we have $e_L \cdot t = t$
- $e_R \in S$ is a right identity of S if for every $t \in S$, we have $t \cdot e_R = t$
- $e \in S$ is a 2-sided identity (or just identity) of S if e is both a left and right identity of S

Theorem: suppose S is a semigroup and $e_L \in S$ a left identity with $e_R \in S$ a right identity

- $e_L = e_R$ as the 2-sided identity
- Semigroup may have at most one 2-sided identity.

Proof: consider the element $e_L \cdot e_R \in S$ then we have

$$e_L \cdot e_R = e_R$$
 and $e_L \cdot e_R = e_L \implies e_R = e_L$

Definition: given a semigroup (S, \cdot) a subsemigroup is a subset $T \subseteq S$ such that

• T is closed under the binary operation inherited from (S, \cdot)

$$T \cdot T := \{ u \cdot v : u, v \in T \} \subseteq T$$

Note that T is a semigroup in its own right.

Monoid

Definition: a monoid is a semigroup S which contains a (necessarily unique) 2-sided identity.

- When written multiplicatively we write the identity element as 1_S
- When written additively we write the identity element as 0_S
- If S is a monoid and $T \subseteq S$, then T is a submonoid of S if T is a subsemigroup of S and $1_S \in T$

Fact: (X^X, \circ) is a monoid with id_x (the identity function) as it 2-sided identity

- If $T \subseteq X^X$ is any subsemigroup, then $T \cup {id_x}$ is a monoid
- A subsemigroup $T \subseteq X^X$ can be monoid while not containing id_x , so T is not a submonoid of S

Facts: fix a function $f: X \to Y$ then

- f has a left inverse iff f is injective
- f has a right inverse iff f is surjective
- f has a 2-sided inverse iff f is bijective

If f has a 2-sided inverse it must be unique and we typically denote it as f^{-1} .

Definition: let S be a monoid with identity 1_S and fix $u \in S$

- $v \in S$ is a *left inverse* of u if $v \cdot u = 1_S$
- $v \in S$ is a right inverse of u if $u \cdot v = 1_S$
- $v \in S$ is a 2-sided inverse of u if v is both a left and right inverse of u

Theorem: Let S be a monoid and $u \in S$

- If $v_L, v_R \in S$ are left and right inverses of u then $v_L = v_R$
- It directly follows that *u* has at most one 2-sided inverse

Proof: consider the element $v_L \cdot u \cdot v_R$ since the binary operation is assocative the following are equivalent:

 $(v_L \cdot u) \cdot v_R = 1_S \cdot v_R = v_R$ and $v_L \cdot (u \cdot v_R) = v_L \cdot 1_S = v_L$

When $u \in S$ has a 2-sided inverse we denote that by u^{-1} .

Group

Definition: a group is a monoid with every element having a (necessarily unique) 2-sided inverse

Summary: a group is a set equiped by some operation where

- The set must be closed under the operation
- The operation must be associative
- The set must contain an 2-sided identity element
- Every element in the set must have another element in the set that is its 2-sided inverse

Basic Properties of Groups

Definition (*Group*): a set G equipped with associative binary operation with:

- 2-sided identity $1_G \in G$ (i.e. for every $g \in G$ we have $1_G \cdot g = g = g \cdot 1_G$)
- 2-sided inverse $g^{-1} \in G$ for every $g \in G$ (i.e. $g^{-1} \cdot g = 1_G = g \cdot g^{-1}$)

Definition: an Abelian group (also called a *commutative group*) is a group where $\forall g, h \in G$

$$g \cdot h = h \cdot g$$

Definition: let set X be non-empty, the symmetric group on X is

$$Sym(X) := \{ f \in X^X : f \text{ is bijective} \} \subseteq X^X$$

- A bijection of the form $X \to X$ can be called a *permutation* of X
- Sym(X) may be called a group of permutaions of X
- When $X = \{1, \ldots, n\}$ we write S_n

For a set of n elements there are n! permutations so $|S_n| = n!$.

Cancellative

Definition: for a semigroup S we say it is

• Left cancellative if for any $a, b, c \in S$

$$ab = ac \implies b = c$$

• Right cancellative if for any $a, b, c \in S$

$$ba = ca \implies b = c$$

• Cancellative if S is both left and right cancellative

Theorem: if G is a group then G is cancellative

Proof: to prove this we show that G is both left and right cancellative

• Suppose that $a, b, c \in S$ satisfies ab = ac, then since G is a group we multiply by inverse $a^{-1} \in G$

$$ab = ac \implies a^{-1}ab = a^{-1}ac \implies b = c$$

• Suppose that $a, b, c \in S$ satisfies ba = ca, then since G is a group we multiply by inverse $a^{-1} \in G$

$$ba = ca \implies baa^{-1} = caa^{-1} \implies b = caa^{-1}$$

Thus G is both left and right cancellative so it is cancellative.

Order

Definitions:

- Order of group G is the size of set |G| (or ∞ if G is infinite)
- Order of element $g \in G$ is the least positive number n with $g^n = 1_G$ (or ∞ if no such n exists)

Lemma: Let G be a finite group then every $g \in G$ has finite order

Proof: consider the finite set $\{g^n : n \in \mathbb{N}\} \subseteq G$ (note: $0 \in \mathbb{N}$ for this class)

- |G| = n is finite, so there must exist some $m \ge n$ where $g^m = g^n$ for $n \in \{0, \dots, n-1\}$
- Then $g^n \cdot g^{-m} = g^{n-m} = 1_G$ and it follows that g has order N = n m which is finite

Subgroups

Definition: for G a group, a subgroup is a subset $H \subseteq G$ is also a group (under the same operation)

- Subsemigroup: associatively and $a, b \in H \implies ab \in H$
- *Identity*: there exists $1_H \in H$ such that $1_H a = a = a 1_H$ for all $a \in H$
- Inverse: given $g \in H$ we require $g_H^{-1} \in H$ such that $g_H^{-1}g = 1_H = gg_H^{-1}$

We write $H \leq G$ to denote that H is a subgroup of G

Lemma: let G be a group and $H \leq G$ a subgroup, then $1_H = 1_G$ **Proof**: since H is a subgroup we have $u = (1_H)^{-1}$ (invest of $1_H \in G$) then

$$1_G = u \cdot 1_H = u \cdot (1_H \cdot 1_H) = (u \cdot 1_H) \cdot 1_H = 1_G \cdot 1_H = 1_H$$

Lemma: if G is a group and $H \leq G$ is a subgroup, then for $g \in H$ we have $g_H^{-1} = g^{-1}$ (so $g^{-1} \in H$) **Proof**: take $g \in H$ and use $1_H = 1_G = 1$ from earlier (don't assume group is Abelian)

$$g_H^{-1}g = 1_H = 1_G = 1$$
 and $gg_H^{-1} = 1_H = 1_G = 1$ \rightarrow $g_H^{-1} = g^{-1} \in H$

Definition: let G be a group, then a subgroup $H \leq G$ must satisfy:

- Subsemigroup: $a, b \in H \implies ab \in H$ (and associative)
- Identity: $1_G \in H$
- Inverse: $g \in H \implies g^{-1} \in H$

Examples of Groups

Symmetric Group

$$Sym(X) := \{ f \in X^X : f \text{ is bijective} \}$$

 $f \in \text{Sym}(x)$ is a bijection of the form $f: X \to X$ and can also be called a permutaion of X.

We write S_n to denote Sym(X) when $X = \{1, ..., n\}$ and $|S_n| = n!$ (S_n contains n! elements)

- S_0 and S_1 each contain exactly one element (groups with one element are called *trivial*)
- S_2 contains the identity and an element to swap 1 and 2 which we denote by (12)
 - Notice that $(12)^2 := (12) \circ (12) = id_2$ so we can create a multiplication table:

	id ₂	(12)
id_2	id ₂	(12)
(12)	(12)	id_2

 S_2 is Abelian but S_n in general is not.

- By convention the entry in the table in row g and column h is the element $g \circ h$

We will now consider S_3 which has 6 elements and can be described in *cycle notation* as the set:

$$S_3 = \{ id_3, (12), (23), (13), (123), (132) \}$$

- (12) denotes ther permutation of $\{1,2,3\}$ which swaps 1 and 2 and leaves 3 fixed
- (123) sends $1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1$ and (132) sends $1 \rightarrow 3, 3 \rightarrow 2, 2 \rightarrow 1$
- Composition of permuations described in this notation is requires some practice

Example: $(12) \circ (13) = (132)$

This can be seen by considering what $(12) \circ (13)$ does on every possible input:

$$((12) \circ (13))(1) = (12)(3) = 3$$
$$((12) \circ (13))(2) = (12)(2) = 1$$
$$((12) \circ (13))(3) = (12)(1) = 2$$

	id ₃	(12)	(23)	(13)	(123)	(132)
id_3	id ₃	(12)	(23)	(13)	(123)	(132)
(12)	(12)	id_3	(123)	(132)	(23)	(13)
(23)	(23)	(132)	id3	(123)	(13)	(12)
(13)	(13)	(123)	(132)	id_3	(12)	(23)
(123)	(123)	(13)	(12)	(23)	(132)	id_3
(132)	(132)	(23)	(13)	(12)	id_3	(123)

The full multiplication table for S_3 (note that on row g column h is the entry $g \circ h$)

• Notice that gh = hg is not always satisfied so S_3 is not Abelian.

- An example of this can be seen with (13) and (12)

$$((12) \circ (13))(\{1, 2, 3\}) = (12)(\{3, 2, 1\}) = \{3, 1, 2\} \rightarrow (12) \circ (13) = (132)$$
$$((13) \circ (12))(\{1, 2, 3\}) = (13)(\{2, 1, 3\}) = \{2, 3, 1\} \rightarrow (13) \circ (12) = (123)$$

- Notice that (123) is the same as (231) and (312)
- id₃ appears in an entry for each row and in each column

every row as has an id $\iff \forall g \in G \ \exists h \in G \ gh = id \iff$ every element has a right inverse every column has an id $\iff \forall g \in G \ \exists h \in G \ hg = id \iff$ every element has a left inverse

• There are also no repeats in any row or column which corresponds to being cancellative

$$(\forall g, h_0, h_1 \in G \quad h_0 \neq h_1 \implies h_0g \neq h_1g_1) \iff$$
 right cancellative
 $(\forall g, h_0, h_1 \in G \quad h_0 \neq h_1 \implies gh_0 \neq gh_1) \iff$ left cancellative

note this is the contrapositive of the definition of cancellative.

 S_3 is a group so the last two observations should not be surprising but it is nice to get a concrete example.

Remark: elements of S_3 correspond to symmetrices of a triangle's rotations and flips

• In general however S_n does not correspond to symmetrices of an *n*-gon

Dihedral Group

 $D_{2n} = \{ f \in S_n : \forall i, j \in \{1, \dots, n\}, \ i \sim j \iff f(i) \sim f(j) \}$

The Dihedral group D_{2n} is a subgroup of S_n where the permutation respects the *edges*

- For a more concrete understanding imagine n points arranged in a circle
 - $-S_n$ is if you are allowed to swap any point with any other point
 - D_{2n} is if adjacent vertices must remain adjacent vertices after the mapping

- This is much more restrictive and we find that $|D_{2n}| = 2n$ while $|S_n| = n!$
- Note that most literature use D_n to mean the same thing as our D_{2n}

We will inspect D_8 which is the group of symmetries of a square (4-gon)

$$D_8 = \{ f \in S_4 : \forall i, j \in \{1, 2, 3, 4\}, \ i \sim j \iff f(i) \sim f(j) \}$$

- We have vertices labelled 1, 2, 3, 4
- We also have the edge relations $1\sim 2,\, 2\sim 3,\, 3\sim 4,\, 4\sim 1$
 - note: for $a, b \in \{1, 2, 3, 4\}$ having $a \sim b$ also means we have $b \sim a$ and we also take $a \sim a$
- There are 8 elements of D_8 which are

$$D_8 = \{ id_4, R_{90}, R_{180}, R_{270}, F, R_{90} \circ F, R_{180} \circ F, R_{270} \circ F \}$$

- R_n denotes rotate n degrees
- -F denotes flip (any flip that does not move the square is fine)
- $-R_n \circ F$ denotes flip then rotate *n* degrees

Let us verify $D_8 \leq S_4$. begin by letting $i, j \in \{1, 2, 3, 4\}$

• Subsemigroup: $f, g \in D_8$

$$i \sim j \iff g(i) \sim g(j) \qquad (\text{as } g \in D_8)$$
$$\iff f(g(i)) \sim f(g(j)) \qquad (\text{as } f \in D_8)$$

Hence $f \circ g \in D_8$

• Identity $id_4 \in D_8$

$$i \sim j \iff i = \mathrm{id}_4(i) \sim \mathrm{id}_4(j) = j$$

• Inverse: if $f \in D_8$ consider $f^{-1} \in S_4$ (show that $f^{-1} \in D_8$)

$$f^{-1}(i) \sim f^{-1}(j) \iff f(f^{-1}(i)) \sim f(f^{-1}(j)) \qquad (f \in D_8)$$
$$\iff i \sim j \qquad (f \circ f^{-1} = \mathrm{id}_4)$$

which shows that $f^{-1} \in D_8$

Additive Group of Integers Modulo n

Let $\mathbb{Z}_n := \{i \in \mathbb{N} : 0 \le i < n\}$ then given $a, b \in \mathbb{Z}_n$ we set

$$a + b = i \mod n \iff a + b = i + cn$$
 for some $c \in \mathbb{Z}$

- Proof of associative is trivial
- This group is Abelian because normal addition is commutative
- The 2-sided identity is 0 and given $i \in \mathbb{Z}_n$ the -i (inverse) is

$$-i = \begin{cases} 0 & \text{if } i = 0\\ n-1 & \text{if } i \neq 0 \end{cases}$$

- As a result we know that $(\mathbb{Z}_n, +)$ is a group
- For $a \in \mathbb{Z}_n$ what are the possible values for |a|?
 - e.g. for $3, 4 \in \mathbb{Z}_6$ then |4| = 3 (4, 2, 0) and |3| = 2 (3, 0)
 - We know that $m \leq n$ is a possible order iff $m \mid n$

Other related groups:

- $(\mathbb{Z}, +)$ is an *additive* group (Abelian and every *non-zero* element has order ∞)
- $(\mathbb{R}, +)$ is an *additive* group

Multiplicative Group of Integers Modulo n and Unit Group

Let $\mathbb{Z}_n := \{i \in \mathbb{N} : 0 \le i < n\}$ then given $a, b \in \mathbb{Z}_n$ we set

 $a \cdot b = i \mod n \iff a \cdot b = i + cn$ for some $c \in \mathbb{Z}$

- Proof of associative is trivial
- This group is Abelian because normal multiplication is commutative
- The 2-sided identity is 1
- 0 will never have an inverse so (\mathbb{Z}_n, \cdot) is not a group when $n \geq 2$
 - another failure: in \mathbb{Z}_4 , 2 does not have an inverse

Lemma (*Bézout*): let $a, b \in \mathbb{Z}$ then $\exists x, y \in \mathbb{Z}$ such that

$$gcd(a,b) = ax + by$$

• If gcd(m, n) = 1 there would exist some $x, y \in \mathbb{Z}$ such that

 $1 = mx + ny \rightarrow 1 = mx \mod n$

This means that m's inverse x will exist if gcd(m, n) = 1

• If x is m's inverse then 1 = mx + ny and letting g = gcd(m, n) then

$$g \mid m \text{ and } g \mid n \implies g \mid mx + ny \implies g \mid 1$$

Since only 1 and -1 divides 1 the only choice is that gcd(m, n) = 1 (since gcd can't be negative) As a result, $m \in \mathbb{Z}_n$ has a multiplicative inverse iff gcd(m, n) = 1

Definition: the *unit group* is the subset $\mathbb{U}_n \subseteq \mathbb{Z}_n$ of elements with a multiplicative inverse:

 $\mathbb{U}_n = \{m \in \mathbb{Z}_n : \gcd(m, n) = 1\}$

- e.g. $\mathbb{U}_7 = \{1, 2, 3, 4, 5, 6\}$
- e.g. $\mathbb{U}_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}$

Notice that when p is prime then $\mathbb{U}_p = \{1, \ldots, p-1\}$

Free Group

The free group on 2 generators F_2 is built from the formal symbols $\{a, a^{-1}, b, b^{-1}\}$

- A word over this alphabet is just a finite string of the symbols
- The *reduced word* over this alphabet is a word where no more cancellation is possible

$$-aa^{-1}$$
, $a^{-1}a$, bb^{-1} , $b^{-1}b$ can all be cancelled into into identity 1

- every word is *equivalent* to some unique reduced word
- e.g. $abaa^{-1}b^{-1}ab \rightarrow abb^{-1}ab \rightarrow aab$

The free group F_2 is the set of reduced words under the operation of concatenation and reduction

- e.g. $(aab) \cdot (b^{-1}ab) = aaab$
- The identity is the empty word
- Inverse is flipping the word and inverting all the symbols

$$-$$
 e.g. $(ab)^{-1} = b^{-1}a^{-1}$

This group is not Abelian and every non-identity element has infinite order

Infinite Dihedral Group

The *infinite dihedral group* D_{∞} is the set of reduced words built from the formal symbols $\{a, b\}$

- This time we let a and b as their own inverse symbol and use the same reduction rule
 - -aa = 1 = bb then |a| = 2 = |b|
 - e.g. baab = 1 = abba
 - e.g. $|ab| = \infty = |ba|$
 - e.g. $aaababb \rightarrow ababb \rightarrow aba$
- The identity is once again the empty string
- Inverse of a given string is produced by flipping the string backwards

$$-$$
 e.g. $(ab)^{-1} = ba$

This group is not Abelian but notice that it is a infinite group with elements of finite order

The finite dihedral group D_{2n} denotes the symmetries of an *n*-gon so what do elements of D_{∞} act on?

- A shape with ∞ edges (∞ -gon) is a infinite line up and down wich each vertex labelled
- Applying a flips the line at the point just above 0
- Applying *b* flips the line at 0
- *ab* shifts the line 1 slot upwards (*ba* shifts the line one slot downwards)

Say that $|D_{\infty}| = \infty$ while many elements have order 2 and many others have order ∞

Subgroups and Generators

Subgroup Tests

Proposition (one-step subgroup test): suppose G is a group, then $H \leq G$ if H is non-empty and

- H is a subsemigroup of G
- *H* is closed under inverses

Proof: just need to show that $1_G \in H$

- Since $H \neq \emptyset$, fix any $g \in H$
- Using H's closure under inverses we also must have $g^{-1} \in H$
- As $H \subseteq G$ is a subsemigroup (closed under composition) we have

$$g^{-1} \cdot g = 1_G \in H$$

Proposition (finite subgroup test): suppose G is a finite group, then $H \leq G$ if H is non-empty and

• H is a subsemigroup of G

Proof: just need to show that H is closed under inverses

- Since $H \neq \emptyset$, fix any $g \in H$
- Then to show that $g^{-1} \in H$ we use G is finite and find $|g| = n \in \mathbb{N} \setminus \{0\}$

- If
$$n = 1$$
 then $g = 1_G = g^{-1}$

- If $n \ge 2$ then $g^{n-1} \cdot g = 1_G = g \cdot g^{n-1}$ so we get $g^{n-1} = g^{-1} \in H$

Generators

Definitions: let G be a group and $X \subseteq G$

- $\langle X \rangle_s$ denotes subsemigroup generated by X, which is the smallest subsemigroup of G containing X
- $\langle X \rangle$ denotes subgroup generated by X, which is the smallest subgroup of G containing X

Proposition: let G be a group and $X \subseteq G$ then

- 1. $\langle X \rangle_s = \{x_1^{n_1} \cdots x_m^{n_m} : x_1, \dots, x_m \in X; m, n_1, \dots, n_m \in \mathbb{N} \setminus \{0\}\}$
- 2. $\langle X \rangle = \{ x_1^{n_1} \cdots x_m^{n_m} : x_1, \dots, x_m \in X; m \in \mathbb{N}; n_1, \dots, n_m \in \mathbb{Z} \}$

Proof: we have $1_G \in \langle X \rangle_s$ and $1_G \in \langle X \rangle$ since we an take m = 0

1. To show $\langle X \rangle_s$ is a subsemigroup take some $x_1^{n_1} \cdots x_m^{n_m}, \ y_1^{k_1} \cdots y_\ell^{k_\ell} \in \langle X \rangle_s$

• Consider the product $x_1^{n_1} \cdots x_m^{n_m} \cdot y_1^{k_1} \cdots y_\ell^{k_\ell}$ by renaming y_j to x_{m+j} and k_j to n_{m+j} then

$$x_1^{n_1} \cdots x_{m+\ell}^{n_{m+\ell}} \in \langle X \rangle_s$$

so $\langle X \rangle_s$ is a subsemigroup

- 2. To show $\langle X \rangle$ is a group we use the one-step subgroup test
 - By the same argument as (1) we get that $\langle X \rangle$ is a subsemigroup
 - To show that $\langle X \rangle$ is closed under inverses, let $x_1^{n_1} \cdots x_n^{n_m} \in \langle X \rangle$ then

$$(x_1^{n_1} \cdots x_m^{n_m})^{-1} = x_m^{-n_m} \cdots x_1^{-n_1} \in \langle X \rangle$$

so $\langle X \rangle$ is a group

These are the smallest since they are produced from taking products of elements and inverses of X

Remarks:

- If $\langle X \rangle = G$ then we say that X generates G
- When $X = \{g_1, \dots, g_k\}$ for some $g, \dots, g_k \in G$ we usually write $\langle g_1, \dots, g_k \rangle$ for $\langle \{g_1, \dots, g_k\} \rangle$
- When $X = \{g\}$ for some $g \in G$ then $\langle g \rangle$ is the cyclic subgroup generated by $g \in G$

Examples:

• Consider the group $(\mathbb{Z}, +)$

$$\langle 15, -10 \rangle = 5\mathbb{Z} = \{5n : n \in \mathbb{Z}\}\$$

since gcd(15, -10) = 5

• Consider the group $D_8 = \{ \mathrm{id}_4, R_{90}, R_{180}, R_{270}, F, R_{90} \cdot F, R_{180} \cdot F, R_{270} \cdot F \}$

$$\langle R_{90} \rangle = \{ \mathrm{id}_4, R_{90}, R_{180}, R_{270} \}$$

via the finite subgroup test $\langle R_{90} \rangle_s = \langle R_{90} \rangle$ the set is finite

• Consider the free group on 2 generators $F_2 = \langle a, b \rangle$

$$\langle ab, a \rangle = F_2$$

since $a^{-1}ab = b$ so we have $\{a, b\}$ to construct any element of F_2

Center, Centralizer, Commutator Subgroups

Definitions: let G be a group then

• Center of G

(subset of G that is Abelian)

$$Z(G) := \{ g \in G : \forall h \in G, gh = hg \}$$

- Note that $gh = hg \iff g = hgh^{-1} \iff g = h^{-1}gh$

• Centralizer of subset $S \subseteq G$ in G

(subset of G that is Abelian with S)

$$C_G(S) := \{g \in G : \forall h \in S, gh = hg\}$$

- Note that $C_G(G) = Z(G)$
- If $S = \{g\}$ for some $g \in G$ we write $C_G(g)$ instead of $C_G(\{g\})$
- Commutator of some given $a, b \in G$ is the group element

$$[a,b] := a^{-1}b^{-1}ab$$

(this notation does not denote an interval)

- note that $ab = ba \cdot [a, b]$
- this tells use how far the elemenets are from being commutative
- if a, b are commutive then $[a, b] = 1_G$
- Commutator subgroup of G (sometimes called the *derived subgroup*) is

$$[G,G] := \langle [a,b] : a,b \in G \rangle$$

([G,G] is the subgroup generated by commutators)

Fact: for a group G the following are equivalent:

- G is Abelian
- Z(G) = G
- $[G,G] = \{1_G\}$

Examples:

• Consider D_8

 $-C_{D_8}(F)$ has id₄, F, R_{180} and add $R_{180}F$ because the set needs to be a subgroup

$$C_{D_8}(F) = \{ \mathrm{id}_4, F, R_{180}, R_{180} \circ F \}$$

 $-C_{D_8}(R_{90})$ contains all rotations because that is the cyclic subgroup generated by R_{90}

$$C_{D_8}(R_{90}) = \{ \mathrm{id}_4, R_{90}, R_{180}, R_{270} \}$$

- Since $D_8 = \langle R_{90}, F \rangle$ we have

$$Z(D_8) = C_{D_8}(F) \cap C_{D_8}(R_{90}) = \{ \mathrm{id}_4, R_{180} \}$$

In general for non-empty subsets $A_1, \ldots, A_k \subseteq G$ if we have $G = \langle A_1, \ldots, A_k \rangle$ then

$$Z(G) = C_G(A_1) \cap \dots \cap C_G(A_k)$$

In order for $a \in Z(G)$ it would need to commute $\forall g \in G$ so it should show up in every $C_G(A_i)$

$$C_G(S) := \{ g \in G : \forall h \in S, gh = hg \}$$

• Consider $F_2 = \langle a, b \rangle$ we claim that $Z(F_2) = \{1_{F_2}\}$

- Let $w \in F_2$ be a non-trivial reduced word, say $w = y_1 \cdots y_n$ with $y_i \in \{a, b, a^{-1}, b^{-1}\}$ - Let $x \in \{a, b, a^{-1}, b^{-1}\}$ be chosen so $x \neq y_1$ and $x \neq y_1^{-1}$ then

$$xw = xy_1 \cdots y_n$$

* If n = 1 then $wx = y_1x$ is reduced and $xw \neq wx$ since $xy_1 \neq y_1x$

* If $n\geq 2$ then wx even after reducing still starts with the same letter as w

· xw specifically does not start with the same letter as w so we must have $xw \neq wx$ as a result we can say that $w \notin Z(G)$

Isomorphisms, Cyclic Groups, Permutation Groups

Isomorphisms

Definitions: Let G and H be groups

• An *isomorphism* is a bijection $\psi: G \to H$ which respects the group operations:

$$\forall a, b \in G \qquad \psi(a \cdot b) = \phi(a) \cdot \phi(b)$$

 $-a \cdot b$ uses the group operation from G while $\phi(a) \cdot \phi(b)$ uses the group operation from H

• G and H are *isomorphic* (written $G \cong H$) if there is an isomorphism from G to H (or vice versa)

Remark: we can have isomorphisms between groups written additively and multiplicatively:

$$\psi(a+b) = \psi(a) \cdot \psi(b)$$

Proposition: let G and H be groups and $\psi: G \to H$ be an isomorphism, then

- 1. $\psi^{-1}: H \to G$ is also an isomorphism
- 2. $\psi(1_G) = 1_H$
- 3. $\forall g \in G$ we get $\psi(g^{-1}) = \psi(g)^{-1}$

Proofs:

1. ψ^{-1} is clearly a bijection so we just need to check that it respects the group operations

• Let $h_0, h_1 \in H$, then since ψ is an isomorphism

$$\psi(\psi^{-1}(h_0) \cdot \psi^{-1}(h_1)) = \psi(\psi^{-1}(h_0)) \cdot \psi(\psi^{-1}(h_1)) = h_0 \cdot h_1$$
$$\psi(\psi^{-1}(h_0 \cdot h_1)) = h_0 \cdot h_1$$

• Since ϕ is a bijection these outputs can only be the same iff the inputs are the same so

$$\psi^{-1}(h_0) \cdot \psi^{-1}(h_1) = \psi^{-1}(h_0 \cdot h_1)$$

2. Let $a \in G$ and $b \in H$ where $\psi(a) = b$ then

$$b = \psi(a \cdot 1_G) = a \cdot \psi(1_G)$$
$$b = \psi(1_G \cdot a) = \psi(1_G) \cdot a$$

since $\psi(1_G)$ is a (necessarily unique) 2-sided inverse then $1_H = \psi(1_G)$

3. Let $a \in G$ then

$$\psi(a^{-1}) \cdot \psi(a) = \psi(a^{-1}a) = 1_H = \psi(a)^{-1} \cdot \psi(a) \implies \psi(a^{-1}) = \psi(a)^{-1}$$

Proposition: if G, H, K are groups with $G \cong H$ and $H \cong K$ then $G \cong K$

Proof: let $\psi: G \to H$ and $\varphi: H \to K$ be isomorphisms. to show that

$$\varphi \circ \psi : G \to K$$

is an isomorphism we observe that it is a bijection. Then consider $a, b \in G$

$$\begin{split} \varphi \cdot \psi(a \cdot b) &= \varphi(\psi(a \cdot b)) \\ &= \varphi(\psi(a) \cdot \psi(b)) \\ &= \varphi(\psi(a)) \cdot \varphi(\psi(b)) \\ &= (\varphi \circ \psi(a)) \cdot (\varphi \circ \psi(b)) \end{split}$$

Keep in mind that there are three different group operations present in the above.

Cyclic Groups

Definition: a group G is cyclic if there exists $a \in G$ with $G = \langle a \rangle$

We have two examples for cyclic groups (and all other cyclic groups are isomorphic to these)

- 1. $(\mathbb{Z}, +) = \langle 1 \rangle$
- 2. $(\mathbb{Z}_n, +) = \langle 1 \rangle$ for $n \in \mathbb{N} \setminus \{0\}$

Remark: all cyclic groups are Abelian but not all Abelian groups are cyclic

Theorem: let $G = \langle a \rangle$ be a cyclic group then |G| = |a|

• Order of $a \in G$ denoted $|a| = n \ge 1$ is the lowest value with $a^n = 1_G$ (or ∞ if no such n exists)

Proof: by definition we have $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$

• If $|a| = \infty$

- If |G| is finite then for some $m, n \in \mathbb{Z}$ with m < n there exists $a^m = a^n$ however

$$a^m = a^n \iff 1_G = a^{n-m}$$

but $n - m \in \mathbb{N} \setminus \{0\}$ contradicting that |a| has infinite order so $|G| = \infty$

• If
$$|a| = n \in \mathbb{N} \setminus \{0\}$$

- If |G| < n then for some $i, j \in \{0, ..., n-1\}$ with j < i there exists $a^j = a^i$ however $a^j = a^i \iff 1_G = a^{i-j}$

but i - j < n contradicts that |a| = n so we must have $|G| \ge n$

- Noting that every $m \in \mathbb{Z}$ satisfies m = nq + r for some $q \in \mathbb{Z}$ and $r \in \{0, \dots, n-1\}$ then $a^m = a^{nq} \cdot a^r = (a^n)^q \cdot a^r = 1_G \cdot a^r = a^r$

this says that $|G| \leq n$ which combined with the previous point shows that |G| = n

Theorem: let $G = \langle a \rangle$ be a cyclic group then

- If $|a| = \infty$ then $G \cong (\mathbb{Z}, +)$
- If $|a| = n \in \mathbb{N} \setminus \{0\}$ then $G \cong (\mathbb{Z}_n, +)$

Proof:

- 1. Define $\psi: \mathbb{Z} \to G$ via $\psi(m) = a^m$
 - from proof of |G| = |a| we argued if $|a| = \infty$ then for all $m, n \in \mathbb{Z}$ with m < n we get $a^m \neq a^n$
 - from that we get that ψ is an injection and also surjective by definition of $\langle a \rangle$
 - ψ is bijective so just need to show it respects the group operations to be an isomorphism

$$\forall m, n \in \mathbb{Z}$$
 $\psi(m+n) = a^{m+n} = a^m \cdot a^n = \psi(m) \cdot \psi(n)$

- 2. Assume |a| = n with $n \in \mathbb{N} \setminus \{0\}$ and define $\psi : \mathbb{Z}_n \to G$ via $\psi(m) = a^m$
 - from proof of |G| = |a| we argued that for all $m, n \in \{0, \ldots, n-1\}$ with m < n that $a^m \neq a^n$
 - from that we get that ψ is an injection
 - since ψ is an injection from one finite set another set of the same size, ψ is a bijection
 - with ψ bijective we just need to check that ψ respects group operations, so fix $k, \ell \in \mathbb{Z}_n$ - if $k + \ell < n$ then

$$\psi(k + \ell \mod n) = \psi(k + \ell)$$
$$= a^{k+\ell}$$
$$= a^k \cdot a^{\ell}$$
$$= \psi(k) \cdot \psi(\ell)$$

- if $k + \ell \ge n$ then

$$\psi(k + \ell \mod n) = \phi(k + \ell - n)$$

$$= a^{k + \ell - n}$$

$$= a^k \cdot a^\ell \cdot a^{-n} \qquad (\text{note: } a^{-n} = (a^n)^{-1} = 1_G)$$

$$= \psi(k) \cdot \psi(\ell)$$

Theorem: every subgroup of a cyclic group is cyclic

Proof:

- Consider subset $X \subseteq \mathbb{Z}$
 - $\operatorname{gcd}(X) = d \in \mathbb{N}$ is the greatest number that divides every $x \in X$
 - by Bézout's identity for $x_1, \ldots, x_n \in X$ there exists $a_1, \ldots, z_n \in \mathbb{Z}$ with

$$d = a_1 x_1 + \dots + a_n x_n$$

this means that $d \in \langle X \rangle$ and hence $\langle d \rangle \subseteq \langle X \rangle$

- also if $m \in \langle X \rangle$ then, since $d \mid x$ for $x \in X$, we must have $d \mid m$ so $m \in \langle d \rangle$ thus $\langle d \rangle = \langle X \rangle$
- Consider subset $X \subseteq \mathbb{Z}_n$
 - just like above we have $gcd(X) = d \in \mathbb{N}$ and $a_1x_1 + \cdots + a_nx_n = d \in \langle X \rangle$ so $\langle d \rangle \subseteq \langle X \rangle$
 - if $m \in \langle X \rangle$ then, since $d \mid x$ for $x \in X$, we must have $d \mid m + qn$ for some $q \in \mathbb{Z}$
 - since $m + qn = m \mod n$ we conclude that $m \in \langle d \rangle$ thus $\langle d \rangle = \langle X \rangle$

Euler's Totient Function

Definition: Euler's phi function $\phi : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ defined by

$$\phi(d) := |\{k \in \mathbb{N} \setminus \{0\} : k < d \text{ and } gcd(k, d) = 1\}|$$

Remark: usually referred to as Euler's totient function in the literature

Example: $\phi(8) = |\{1, 3, 5, 7\}| = 4$

Theorem: fix $n \in \mathbb{N} \setminus \{0\}$ and consider \mathbb{Z}_n

1. If $d \in \mathbb{Z}_n$ and $d \mid n$ then

$$\langle d \rangle = \{0, d, 2d, \dots, n-d\}$$
 and $|d| = \frac{n}{d}$

2. For any $a \in \mathbb{Z}_n$ we have

$$\langle a \rangle = \langle \gcd(a, n) \rangle$$

3. Given $a, b \in \mathbb{Z}_n$ we have

$$\langle a \rangle = \langle b \rangle \iff \gcd(a, n) = \gcd(b, n)$$

Proof:

- 1. Since $\frac{n}{d} \cdot d = 0 \mod n$ we definitely have $|d| \leq \frac{n}{d}$
 - for $|d| \ge \frac{n}{d}$ we know that for all $k \in \mathbb{N} \setminus \{0\}$ with $k < \frac{n}{d}$ we have 0 < kd < n so we get $|d| = \frac{n}{d}$
- 2. Write $d = \gcd(a, n)$ as a = qd for some $q \in \mathbb{Z}$ and directly get $\langle a \rangle \subseteq \langle d \rangle$
 - to show that $d \in \langle a \rangle$ we use Bézout's identity to say there exists $k, \ell \in \mathbb{Z}$ with $d = ka + \ell n$
 - then $d = ka + \ell n = ka \mod n$ and $d \in \langle a \rangle$ so hence $\langle a \rangle = \langle d \rangle$

- 3. the right to left implication follows directly from (2)
 - for the converse suppose $gcd(a, n) \neq gcd(b, n)$ then by (1)

$$|\langle \gcd(a,n)\rangle| = \frac{n}{\gcd(a,n)} \neq \frac{n}{\gcd(b,n)} = |\langle \gcd(b,n)\rangle|$$

since the cyclic subgroups have different sizes by (2) we have $\langle a \rangle \neq \langle b \rangle$

Corollary: if G finite cyclic group and $d \mid n$ then G has exactly one subgroup H of order d

Proof: we may assume that $G = \mathbb{Z}_n$ (because conclusion of corollary is preserved by isomorphism)

- For existance of $H \leq G$ with order d we let $H = \langle \frac{n}{d} \rangle$
 - then since $\frac{n}{d} \mid n$ by part 1 of the previous theorem $\left|\frac{n}{d}\right| = n/\frac{n}{d} = d$ and we get $|H| = \left|\frac{n}{d}\right| = d$
- For uniqueness consider some subgroup $K \leq G$ with |H| = d
 - for some $a \in \mathbb{Z}_n$ we have $H = \langle a \rangle$ and by part 2 of previous theorem $\langle a \rangle = \langle \gcd(a, n) \rangle$
 - for $|\langle \gcd(a,n) \rangle| = d$ by part 1 of previous theorem then $\gcd(a,n) = n/d$ thus K = H

Corollary:

1. If G is a cyclic group of order $n \in \mathbb{N} \setminus \{0\}$ then

$$|\{g \in G : \langle g \rangle = G\}| = \phi(n)$$

2. If G is a cyclic group of order $n \in \mathbb{N} \setminus \{0\}$ and $d \ge 1$ divides n then

$$|\{a \in G : |a| = d\}| = \phi(d)$$

3. If G is any finite group and $d \in \mathbb{N} \setminus \{0\}$

 $|\{a \in G : |a| = d\}|$ is a multiple of $\phi(d)$

Proof: for parts (1) and (2) we work with $G = \mathbb{Z}_n$

1. Given $a \in \mathbb{Z}_n$ we know $\langle a \rangle = \langle \gcd(a, n) \rangle$ so

$$\langle a \rangle = G = \langle 1 \rangle \iff \gcd(a, n) = 1$$

and the number of such $a \in \mathbb{Z}_n$ is exactly $\phi(n)$

2. Any $a \in \mathbb{Z}_n$ with |a| = d belongs to unique subgroup of order d generated by $\langle \frac{n}{d} \rangle$

We then just apply part (1) to this subgroup

3. Consider the collection

$$X = \{ H \le G : H \cong \mathbb{Z}_d \}$$

every $a \in G$ of order d belongs to at least one memory of X, namely $\langle a \rangle$

- Inside each $H \in X$ there are exactly $\phi(d)$ -many elements of order d by part (2)
- If $H_0, H_1 \in X$ and $a \in H_0 \cap H_1$ has order d then $\langle a \rangle = H_0 = H_1$ hence

$$|\{a \in G : |a| = d\}| = |X| \cdot \phi(d)$$

Permutation Groups

Recall: permutation groups are subgroups of the symmetric group.

- Given a set X, we write Sym(X) for the group of permutaions of X (bijections from X to itself)
- If $X = \{1, ..., n\}$ for some $n \in \mathbb{N} \setminus \{0\}$ we write S_n for the symmetric group

Definitions: let X be a set, and fix $\sigma \in \text{Sym}(X)$

- Subset $Y \subseteq X$ is σ -invariant if $\sigma[Y] = Y$
- Given $y \in X$, the σ -orbit of y is the smallest σ -invariant set containing y

$$O_{\sigma}(y) := \{ \sigma^m(y) : m \in \mathbb{Z} \}$$

- the cycle created by repeatedly applying σ to y
- The support of σ is the σ -invariant set

$$\operatorname{supp}(\sigma) := \{ y \in X : \sigma(y) \neq y \}$$

- the set of all $y \in X$ that was moved by σ

Proposition:

1. Supposing $\sigma, \theta \in \text{Sym}(x)$ have disjoint supports then

$$\sigma\circ\theta=\theta\circ\sigma$$

- 2. Suppose $\sigma \in \text{Sym}(X)$ and that $\text{supp}(\sigma) = Y \cup Z$ with Y and Z disjoint, non-empty, and σ -invariant
 - then there are $\sigma_Y, \sigma_Z \in \text{Sym}(X)$ with

$$\operatorname{supp}(\sigma_Y) = Y$$
, $\operatorname{supp}(\sigma_Z) = Z$ and $\sigma = \sigma_Y \circ \sigma_Z = \sigma_Z \circ \sigma_Y$

Proof:

1. Given $x \in X$ we have

$$\sigma \circ \theta(x) = \theta \circ \sigma(x) = \begin{cases} x & \text{if } x \notin \text{supp}(\sigma) \cup \text{supp}(\theta) \\ \sigma(x) & \text{if } x \in \text{supp}(\sigma) \\ \theta(x) & \text{if } x \in \text{supp}(\theta) \end{cases}$$

Remark: this fails if the supports are *not disjoint*

2. Define $\sigma_Y, \sigma_Z \in \text{Sym}(X)$ where given $x \in X$, we have

$$\sigma_Y(x) = \begin{cases} x & \text{if } x \notin Y \\ \sigma(x) & \text{if } x \in Y \end{cases} \qquad \sigma_Z(x) = \begin{cases} x & \text{if } x \notin Z \\ \sigma(x) & \text{if } x \in Z \end{cases}$$

Now we check that σ_Y and σ_Z are bijections.

- Consider $\sigma^{-1} \in \operatorname{Sym}(X)$ and define $(\sigma^{-1})_Y : X \to X$ via

$$(\sigma^{-1})_Y(x) = \begin{cases} x & \text{if } x \notin Y \\ \sigma^{-1}(x) & \text{if } x \in Y \end{cases}$$

As Y is σ -invariant it is also σ^{-1} -invariant (verify that $(\sigma^{-1})_Y = (\sigma_Y)^{-1}$)

- We can say that σ_Y is invertible and thus a bijection (similar argument for σ_Z)
- Notice that $\operatorname{supp}(\sigma_Y) = Y$ and $\operatorname{supp}(\sigma_Z) = Z$ and so

$$\sigma_y \circ \sigma_z(x) = \sigma_z \circ \sigma_y(x) = \begin{cases} x & \text{if } x \notin Y \cup Z = \text{supp}(\sigma) \\ \sigma(x) & \text{if } x \in Y \\ \sigma(x) & \text{if } x \in Z \end{cases}$$

since they are disjoint we get $\sigma_Y \circ \sigma_Z = \sigma$

Proposition: let $\sigma \in \text{Sym}(X)$ then given $x, y \in X$ either

$$O_{\sigma}(x) = O_{\sigma}(y)$$
 or $O_{\sigma}(x) \cap O_{\sigma}(y) = \emptyset$

Proof: suppose $z \in O_{\sigma}(x) \cap O_{\sigma}(y)$, we will show that $O_{\sigma}(x) = O_{\sigma}(y) = O_{\sigma}(z)$

- Write $z = \sigma^m(x)$ for some $m \in \mathbb{Z}$, so we also have $x = \sigma^{-m}(z)$
- Given $u \in O_{\sigma}(x)$ we have $u = \sigma^n(x)$ for some $n \in \mathbb{Z}$, so we also have

$$u = \sigma^n(\sigma^{-m}(z)) = \sigma^{n-m}(z) \in O_\sigma(z)$$

• Given $v \in O_{\sigma}(z)$ we have $v = \sigma^k(z)$ for some $k \in \mathbb{Z}$, so we also have

$$v = \sigma^k(\sigma^m(x)) = \sigma^{k+m}(x) \in O_\sigma(x)$$

• Hence $O_{\sigma}(x) = O_{\sigma}(z)$ and we can make a simular proof for $O_{\sigma}(y) = O_{\sigma}(z)$

Permutation Cycles

Definitions: let $\sigma_1, \sigma_2 \in \text{Sym}(X)$

- Cycle is any $\sigma \in \text{Sym}(X)$ with exactly one non-trivial orbit (i.e. of size > 1)
- Size of a cycle is the size of its unique non-trivial orbit
- Disjoint when if cycles $O_1, O_2 \subseteq X$ denotes unique non-trival orbits of σ_1, σ_2 then $O_1 \cup O_2 = \emptyset$

Theorem: any $\sigma \in S_n$ can be written as the product of *finitely many pairwise-disjoint cycles*

- We call such a product the disjoint cycle form of σ
- The full disjoint cycle form is unique

Proof: let $X = \{O_i : i \leq k\}$ list all non-trivial orbits of σ_i

- Since each O_i is a subsets of $\{1, \ldots, n\}$ then X is also finite
- Now perform induction on k where the inductive step is handled by earlier proposition

Theorem: let $\sigma = \sigma_k \cdots \sigma_1 \in S_n$ be written in disjoint cycle form, then letting $n_i = |\text{supp}(\sigma_i)|$

$$|\sigma| = \operatorname{lcm}(n_i : i \le k)$$

(i.e. lowest common multiple of the non-trivial orbit sizes)

Proof: given $m \in \mathbb{Z}$ then since disjoint cycles commute we have

$$\sigma^m = \sigma^m_k \circ \cdots \circ \sigma^m_1$$

- The order of each σ_i is n_i , so if m is a common multiple of each n_i , then $\sigma^m = id_n$
- Conversely, if m was not a multiple of some n_i then $\sigma_i^m \neq id_n$ which results in

$$\sigma^m(x) = (\sigma_k^m \cdots \sigma_1^m)(x) \neq x$$

• Thus it follows that for any $x \in \operatorname{supp}(\sigma_i)$ that $\sigma^m(x) \neq x$

Example:

• What are the possible orders of elements of S_8 ?

- we know that $|\sigma| = \operatorname{lcm}(n_i : i \leq k)$ and need $\sum_{i \leq k} n_i \leq 8$ so the possible orders are

- How many elements in S_4 have order 4?
 - We have 4 ways to partition 8 such that $lcm(n_i : i \le k) = 4$

$$4+4$$
 $4+2+2$ $4+2+1+1$ $4+1+1+1$

- Now we count the number of cycles of length k we have

$$\operatorname{cycle}(n,k) := \frac{n!}{(n-k)!k}$$

- * there are $n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$ partial lists of length k in list of length n
- * partial list is ordered tuple and don't want choosing unordered subsets: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

* we want to preserve order but allow rotations to represent the same element

$$(1234) = (2341) = (3412) = (4123)$$

so there are k ordered tuples that represent the same cycle and $\frac{n!}{(n-k)!k}$

- Using this we can count:
 - * 4 + 4: 4-cycles picking order does not matter

$$\frac{\frac{8\cdot7\cdot6\cdot4}{4}\cdot\frac{4\cdot3\cdot2\cdot1}{4}}{2} = 1260$$

* 4 + 2 + 2: 2-cycles picking order does not matter

$$\frac{\frac{8\cdot7\cdot6\cdot4}{4}\cdot\frac{4\cdot3}{2}\cdot\frac{4\cdot3}{2}}{2} = 1260$$

* 4 + 2 + 1 + 1: 2520

* 4 + 1 + 1 + 1 + 1: 420

- As a result we conclude that S_8 contains exactly 1260 + 1260 + 420 + 5460 elements of order 4

Fact: every $\sigma \in S_n$ can be written as a product of 2 cycles (cycles of length 2)

• However unlike our disjoint cycle form which is unique, this product is not unique

Proposition: fix $n \in \mathbb{N} \setminus \{0\}$. If $id_n = \alpha_r \cdots \alpha_1$ with each α_i a 2-cycle, then r is even **Proof**: we will prove by induction on r (TODO)

Corollary: for any $\alpha \in S_n$ if $\sigma = \alpha_r \cdots \alpha_1 = \beta_s \cdots \beta_1$ where the α_i and β_j are 2-cycles then

 $r\equiv s \bmod 2$

Proof: $\beta_1 \cdots \beta_s \alpha_r \cdots \alpha_1 = \mathrm{id}_n$ so r + s is even (the inverse of a 2-cycle is itself)

Alternating Groups

Definition: alternating group A_n is a subgroup of S_n which is defined as

 $A_n := \{ \sigma \in S_n : \sigma \text{ can be written with an } even \text{ number of 2-cycles} \}$

Proposition: if $\sigma \in S_n$ and $\sigma = \sigma_k \circ \cdots \circ \sigma_1$ is the disjoint cycle form. Let $n_i = |\text{supp}(\sigma_i)|$ then

$$\sigma$$
 even $\iff (n_1 + \cdots + n_k) - k$ even

Proof: each n_i -cycle can be written as a product of $(n_i - 1)$ -many 2-cycles, i.e.

$$(a_1 \cdots a_{n_i}) = (a_1 a_2)(a_2 a_3) \cdots (a_{n_i - 1} a_{n_i})$$

Thus σ can be written as a product of $(n_1 + \cdots + n_k) - k$ 2-cycles

Proposition: for every $n \ge 2$

$$|A_n| = \frac{n!}{2} = \frac{|S_n|}{2}$$

Proof: fix some 2-cycle $g \in S_n$ then consider $\lambda_g : S_n \to S_n$ given by $\lambda_g(h) = gh$ which is a bijection.

- If $h \in A_n$ then $gh \notin A_n$
- If $h \notin A_n$ then $gh \in A_n$
- Hence $\lambda_g[A_n] = S_n \setminus A_n$ (set subtraction) and since λ_g is a bijection we must have $|A_n| = |S_n \setminus A_n|$

$$|S_n| = |A_n| + |S_n \setminus A_n| = 2|A_n| \implies |A_n| = |S_n|/2$$

Cayley's Theorem

Theorem (*Cayley's Theorem*): for any group G, there is a set X and subgroup $H \leq \text{Sym}(X)$ with $G \cong H$

• In fact, we can take X = G

Proof: for each $g \in G$, let $\lambda_g : G \to G$ be defined via $\lambda_g(h) = gh$.

• We know that $\lambda_y \in \text{Sym}(G)$ so define

$$\lambda: G \to \operatorname{Sym}(G) \quad \operatorname{via} \lambda(g) = \lambda_q$$

• To see that λ is injective, fix $g \neq h \in G$ and consider λ_g and λ_h on input 1_G

$$\lambda_g(1_G) = g \quad \text{and} \quad \lambda_h(1_G) = h \implies \lambda_g \neq \lambda_h$$

• To see that λ repects group ops, fix $g, h \in G$ and consider $\lambda_g \circ \lambda_h$ and λ_{gh} , fix some $k \in G$ then

$$\lambda_g \circ \lambda_h(k) = \lambda_g(hk) = ghk \qquad \lambda_{gh}(k) = ghk$$

as a result

$$\lambda_g \circ \lambda_h = \lambda_{gh}$$

For "isomorphic to subgroup of" it suffices to find injection $G \to \text{Sym}(X)$ which respects group operations

Automorphisms, Conjugation, Normality, Cosets

Automorphisms

Definition: let G be group, an *automorphism* of G is an isomorphism from G to itself.

- Let $\operatorname{Aut}(G) \subseteq \operatorname{Sym}(G)$ denote the collection of automorphisms of G
- For every group, the identity map $\operatorname{id}_G: G \to G$ is an automorphism, hence $\operatorname{Aut}(G) \neq \emptyset$

Proposition: for any group G, $Aut(G) \leq Sym(G)$ is a subgroup

Proof: we know that $id_G \in Aut(G)$

- Also recall that the composition of two isomorphisms is also an isomorphism
 - so the composition of two automorphisms is also an automorphism (monoid)
- In addition, the inverse of an isomorphism is also isomorphic
 - so the inverse of an automorphism is an automorphism (group)

Example: the map $\sigma : \mathbb{Z} \to \mathbb{Z}$ is given by $\sigma(n) = -n$ is an automorphism of \mathbb{Z}

• An isomorphism must send generators to generators so 1 must go to either 1 or -1

Proposition: $\operatorname{Aut}(\mathbb{Z}_n) \cong \mathbb{U}_n$

Proof: let $\sigma \in \operatorname{Aut}(\mathbb{Z}_n)$

• Notice that if we can find $\sigma(1) = a$ then this information completely determines σ by

$$\sigma(k)=\sigma(k\cdot 1)=k\cdot\sigma(1)=a\cdot k$$

 $-\sigma$ just becomes a multiplication by a

- Define $\sigma_a:\mathbb{Z}_n\to\mathbb{Z}_n$ via the mapping $\sigma_a(k)=a\cdot k$
- Every element of $\operatorname{Aut}(\mathbb{Z}_n)$ has the form σ_a for some $a \in \mathbb{Z}_n$
- Find find that the mapping σ_a is bijective iff gcd(a, n) = 1 (i.e. if $a \in U_n$) so

$$\operatorname{Aut}(\mathbb{Z}_n) = \{\sigma_a :\in \mathbb{U}_n\}$$

• Now we check that this is isomorphic to \mathbb{U}_n by considering the map $\psi : \mathbb{U}_n \to \operatorname{Aut}(\mathbb{Z}_n)$ given by

$$\psi(a) = \sigma_a$$

• We find that for $a, b \in \mathbb{U}_n$ we have

$$\psi(ab) = \sigma_{ab} = \sigma_a \circ \sigma_b = \psi(a) \circ \psi(b)$$

Conjugation

Definition: fix a group G, given $g \in G$ we define $\phi_g : G \to G$ via $\phi_g(x) := {}^g x = gxg^{-1}$

- We call $\phi_g(x) = gxg^{-1}$ the left *conjugate* of x by g
- We saw similar notation of conjugate $x^g = g^{-1}xg$ which is more-or-less equivalent to ${}^g x = gxg^{-1}$
- The intuition for this is the action of x viewed in the perspective of g

Proposition: let G be a group then $\phi_g \in \operatorname{Aut}(G)$

Proof: first note that $\phi_{g^{-1}}$ is a 2-sided inverse of ϕ_g , showing that ϕ_g is bijective. Now fix $x, y \in G$ then

$$\phi_g(xy) = gxyg^{-1} = gx(g^{-1}g)yg^{-1} = \phi_g(x) \cdot \phi_g(y)$$

Definition: given a group G we call $\psi \in Aut(G)$ an *inner automorphism* if there is $g \in G$ with $\psi = \phi_g$

$$\operatorname{Inn}(G) := \{\phi_q : q \in G\} \subseteq \operatorname{Aut}(G)$$

denotes the collection of inner automorphisms of G.

Proposition: $Inn(G) \leq Aut(G)$

Proof: we already know that $Inn(G) \subseteq Aut(G)$ so

• Just need to verify that $id_G = \phi_{1_G}$, that $\phi_g \circ \phi_h = \phi_{gh}$, and that $(\phi_g)^{-1} = \phi_{q^{-1}}$

Homomorphism

Definition: given groups G and H, a map $\psi: G \to H$ is a homomorphism if for every $x, y \in G$ we have

$$\psi(x \cdot y) = \psi(x) \cdot \psi(y)$$

- Note that the mapping does not have to be a bijection (or even injection/surjection)
- Every isomorphism is a homomorphism
 - since the definition of a homomorphism is a direct weakening of that of isomorphism

Lemma: let G, H groups and $\psi: G \to H$ be a homomorphism

• Then $\psi(1_G) = 1_H$ and for every $g \in G$ we have $(\psi(g))^{-1} = \psi(g^{-1})$

Proof: for all $g \in G$

$$\psi(g) = \psi(1_G \cdot g) = \psi(1_G) \cdot \psi(g) \implies 1_H = \psi(1_G)$$
$$1_H = \psi(1_G) = \psi(g^{-1}g)\psi(g^{-1}) \cdot \psi(g) \implies (\psi(g))^{-1} = \psi(g^{-1})$$

Proposition: the map $\phi: G \to \text{Inn}(G)$ is an isomorphism iff $Z(G) = \{1_G\}$

- Recall that the center of a group is the set of group elements that commute with everything
- Furthermore, we have $\phi_g = \phi_h$ iff $g^{-1}h \in Z(G)$

Proof:

- Recall that $\operatorname{Inn}(G) := \{\phi_g : g \in G\}$ where $\phi_g(x) = gxg^{-1}$
- The map $\phi:G\to \mathrm{Inn}(G)$ defined via $\phi(g)=\phi_g$ is a homomorphism since for $g,h\in G$

$$\phi(gh) = \phi_{qh} = \phi_q \circ \phi_h = \phi(g) \circ \phi(h)$$

• We have two cases:

- suppose $g \in Z(G)$ (g commutes with all elements in G) then given $x \in G$

$$\phi_g(x) = gxg^{-1} = xgg^{-1} = x$$

- suppose $g \in G$ with $\phi_g = \mathrm{id}_G$, then for any $x \in G$

$$x = \phi_g(x) = gxg^{-1} \implies gx = xg$$

since x was arbitrary we have $g \in Z(G)$

- For the furthermore allow $a := g^{-1}h$ for ease of reading
 - if $g^{-1}h \in Z(G)$ then given $x \in G$

$$\phi_a(x) = aha^{-1} = xaa^{-1} = x \implies \phi_a = \mathrm{id}_G$$
$$\mathrm{id}_G = \phi_a = \phi_{g^{-1}h} = \phi_{g^{-1}} \circ \phi_h \implies \phi^g = \phi_h$$

- if $g^{-1}h \notin Z(G)$ then there is some $x \in G$ with

$$\begin{array}{rcl} ax \neq xa & \Longrightarrow & \phi_a(x) = axa^{-1} \neq xaa^{-1} = x & \Longrightarrow & \phi_a \neq \mathrm{id}_G\\ & \mathrm{id}_G \neq \phi_a = \phi_{g^{-1}h} = \phi_{g^{-1}} \circ \phi_h & \Longrightarrow & \phi^g \neq \phi_h \end{array}$$

• If Z(G) is non-trival then ϕ is not an isomorphism as it would not be injective - since every $g \in Z(G)$ would correspond to a ϕ_g that equals id_G

Example: for $G = D_8$, understand the map $\phi_8 \to \text{Inn}(D_8)$, we know that

$$\operatorname{Inn}(D_8) = \{\phi_{\mathrm{id}_4}, \phi_{R_{90}}, \phi_{R_{180}}, \phi_{R_{270}}, \phi_F, \phi_{R_{90}\circ F}, \phi_{R_{180}\circ F}, \phi_{R_{270}\circ F}\}$$

However this list could have repeated elements

- We have seen that $Z(D_8) = {id_4, R_{180} \circ F}$
- Thus for any $g, h \in D_8$ we have

$$\phi_g = \phi_h \quad \iff \quad g^{-1}h \in \{ \mathrm{id}_4, R_{180} \circ F \} \quad \iff \quad h \in g \cdot \{ \mathrm{id}_4, R_{180} \circ F \}$$

• These possible sets of the form $g \cdot {id_4, R_{180} \circ F}$ are exactly

 ${id_4, R_{180} \circ F}, \{R_{90}, R_{270} \circ F\}, \{R_{180}, F\}, \{R_{270}, R_{90}F\}$

• Hence $\phi_g = \phi_h$ iff both of g and h belong to the same set among these 4 sets and $|\text{Inn}(D_8)| = 4$

Kernel

Definition: let G, H be groups and $\psi: G \to H$ be a homomorphism

• The kernel of ψ is the set

$$\ker(\phi) := \{g \in G : \psi(g) = 1_H\}$$

• e.g. for $\phi: G \to \text{Inn}(G)$ we know that $\text{ker}(\phi) = Z(G)$

Proposition: let G, H be groups and $\psi : G \to H$ be a homomorphism. Then $\ker(\psi) \leq G$ is a subgroup **Proof**:

• To see that $\ker(\psi)$ is a semigroup, if $g, h \in \operatorname{Ker}(\psi)$ then

$$\psi(g \cdot h) = \psi(g) \cdot \psi(h) = 1_H \cdot 1_H = 1_G$$

hence $g \cdot h \in \ker(\psi)$

• Note that

$$\psi(1_G) = \psi(1_G \cdot 1_G) = \psi(1_G) \cdot \psi(1_G) \implies 1 = \phi(1_G)$$

hence $1_G \in \operatorname{Ker}(\phi)$

• Now suppose $g \in \ker(\psi)$ then

$$\psi(g^{-1} \cdot g) = 1_H = \psi(g^{-1}) \cdot \psi(g) = \psi(g^{-1}) \quad \to \quad 1_H = \phi(g^{-1})$$

hence $g^{-1} \in \operatorname{Ker}(\phi)$

Normality

Definition: let G be a group. A subgroup $K \leq G$ is called *normal* (in G) if $\forall g \in G$

$$gKg^{-1} = K$$

- If $K \leq G$ is normal we write $K \leq G$.
- Note that $gKg^{-1} := \{gxg^{-1} : x \in K\}$
- Warning: $K \trianglelefteq H$ and $H \trianglelefteq G$ do *not* in general imply $K \trianglelefteq G$

Proposition: let $\psi : G \to H$ be a homomorphism, then $\ker(\psi) \trianglelefteq G$

Proof: Let $x \in \ker(\psi)$ and let $g \in G$ then

$$\psi(gxg^{-1}) = \psi(g)\psi(x)\psi(g^{-1}) = \psi(g)\psi(g^{-1}) = 1_H$$

Hence $gxg^{-1} \in \ker(\psi)$ so $\ker(\psi) \trianglelefteq G$

Cosets

Definition: let G be a group and $H \leq G$.

- Left coset of H in G is a subset of G of the form $gH = \{gh : h \in H\}$ for some $g \in G$
- Right coset of H in G is a subset of G of the form $Hg = \{hg : h \in H\}$ for some $g \in G$

Definition: for $H \leq G$ we also have the *set* of left/right cosets

- $G/H := \{gH : g \in G\}$ denotes the set of left cosets of H in G
- $G/H := \{Hg : g \in G\}$ denotes the set of right cosets of H in G

Let $H \leq G$ and $g \in G$, the following are some basic facts about cosets:

- $g \in gH$ and $g \in Hg$
- |gH| = |H| = |Hg| (due to there existing a bijection between them)
- $(gH)^{-1} := \{k^{-1} : k \in gH\} = Hg^{-1}$ (left coset becomes right coset, and vice versa)
- $H \trianglelefteq G$ iff gH = Hg for every $g \in G$

Example: $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$

- We use additive notation for this group (which by convention means the group is Abelian)
- There are 5 cosets of H in G which are $k + 5\mathbb{Z}$ as k ranges over members of \mathbb{Z}_5

 $-g = 0 \text{ then } 5\mathbb{Z} = \{n \in \mathbb{Z} : n \equiv 0 \mod 5\}$ $-g = 1 \text{ then } 1 + 5\mathbb{Z} = \{n \in \mathbb{Z} : n \equiv 1 \mod 5\}$ $-g = 2 \text{ then } 2 + 5\mathbb{Z} = \{n \in \mathbb{Z} : n \equiv 2 \mod 5\}$ $-g = 3 \text{ then } 3 + 5\mathbb{Z} = \{n \in \mathbb{Z} : n \equiv 3 \mod 5\}$ $-g = 4 \text{ then } 4 + 5\mathbb{Z} = \{n \in \mathbb{Z} : n \equiv 4 \mod 5\}$

Lemma: if $g, k \in G$ a group with $H \leq G$ and $k \in gH$ then kH = gH (similarly for right cosets) **Proof:** since as $k \in gH$ we find $h \in H$ with k = gh then

$$\begin{array}{rcl} k=gh & \Longrightarrow & kH=ghH=g(hH)\subseteq gH\\ \\ g=kh^{-1} & \Longrightarrow & gH=kh^{-1}H=k(h^{-1}H)\subseteq kH \end{array}$$

Then using that $kH \subseteq gH$ and $gH \subseteq kH$ we have kH = gH as expected.

Example: choosing $G = \mathbb{Z}_8$ and subgroup $H = \{0, 4\}$

• The cosets G/H are $\{0,4\}, \{1,5\}, \{2,6\}, \{3,7\}$

Example: choosing $G = D_8$ and subgroup $H = Z(D_8) = {id_4, R_{180} \circ F}$

• Since $H \leq G$ the left and right cosets are = right cosets

$$\{\mathrm{id}_4, R_{180} \circ F\}, \{R_{90}, R_{270} \circ F\}, \{R_{180}, F\}, \{R_{270}, R_{90} \circ F\}$$

once we see all the elements of G we are basically done

Proposition: suppose G a group, $H \leq G$, and $g, k \in G$.

• Then either gH = kH or $gH \cap kH = \emptyset$ (similar for right cosets)

Proof:

• Fix $x \in gH \cap kH$, then there are $h_1, h_1 \in H$ with

$$x = gh_0 = kh_1$$

- since $k = gh_0h_1^{-1}$ we have $kH \subseteq gH$
- since $g = gh_1h_0^{-1}$ we have $gH \subseteq kH$
- As a result we get gH = kH whenever $gH \cap kH \neq \emptyset$

Lagrange's Theorem

Definition: let G be a group and $H \leq G$. The *index* of H in G is the number of left cosets of H in G |G:H| := |G/H|

Theorem (Lagrange's Theorem): Let G be a finite group and $H \leq G$. Then |H| divides |G|

Proof: we will show that the set of left cosets of H in G partition G, and each coset has size |H|

- Let G be a finite group with order n and $H \leq G$ be a subgroup
 - notice that $\mathrm{id}_G \in H$
 - if we pick $g \in G$ with $g \notin H$ we can construct gH with

$$H \cap gH = \emptyset$$

since that would require $gh_i = h_j$ for some i, j however

$$gh_1 = h_j \implies g = h_j h_i^{-1} \in H$$

which contradicts that $g \notin H$

- if we pick another $g' \in G$ with $g' \notin H$ and $g' \notin gH$ we can show that

$$gH \cap g'H = \emptyset$$

since if there is an overlapping element then $gh_i = g'h_j$ for some i.j however

$$gh_i = g'h_j \implies gh_ih_j^{-1} = g' \implies g' \in gH$$

which contradicts that $g'\not\in gH$ (similar argument for $H\cap g'H=\emptyset)$

• Repeating this we get a non-overlapping set of left cosets

$$\{H, g_1H, g_2H, \ldots, g_nH\}$$

notice that this set is just G/H

- the definition of $G/H = \{gH : g \in G\}$ has repeating elements

- Each of these cosets have the size |H| so by construction we know G/H partitions G into cosets
- Using the index of H in G as |G:H| = |G/H| we see that

$$|G| = |H| \cdot |G/H|$$

as a result |H| divides |G|

Corollary: |G:H| = |G/H| = |G|/|H|

Corollary: for G finite group with $g \in G$ we know $|g| = |\langle g \rangle|$ divides |G|

(since $\langle g \rangle \leq G$)

Corollary: groups of prime order are cyclic

Proof: let G have prime order then the only subgroups of G are itself or $\{1_G\}$

- If $G = \{1_G\}$ then cyclic
- Otherwise picking any $g \neq 1_G$ leads to $\langle g \rangle = G$
 - since $|\langle g \rangle|$ must divide |G| which is prime
 - while $g \neq 1_G$ so $|\langle g \rangle| \neq 1$ so $|\langle g \rangle| = p$ and G is cyclic

Corollary: for any finite group G and $g \in G$, $g^{|G|} = 1_G$ **Proof**: order of g divides order of G so |G| = q|g| for some $q \in \mathbb{N}$ then

$$g^{|G|} = g^{|g| \cdot q} = (g^{|g|})^q = 1_G^q = 1_G$$

Corollary (*Fermat's Little Theorem*): for every integer $a \in \mathbb{Z}$ and prime p

$$a^p \equiv a \mod p$$

Proof: we may write a = qp + r for some $q \in \mathbb{Z}$ and $r \in \mathbb{Z}_p$

- If r = 0 then $a^p \equiv a \equiv 0 \mod p$
- If $r \neq 0$ then $r \in \mathbb{U}_p = \mathbb{Z}_p \setminus \{0\}$ (since when p prime, \mathbb{U}_p has a order of p-1) then

$$a^p \equiv r^p \equiv (r^{p-1})r \equiv 1 \cdot r \equiv r \equiv a \mod p$$

since $r^{p-1} = r^{|\mathbb{U}_p|} = 1$

Example: converse of Lagrange's theorem is not true in general

- Consider A_4 and since $|S_4| = 4!$ we have $|A_4| = |S_4|/2 = 12$
- We will show that A_4 has no subgroup of order 6
- The elements of A_4
 - id_4
 - -2 2-cycles:

$$\frac{\frac{4\cdot3}{2}\cdot\frac{2\cdot1}{2}}{2} = 3$$

- 3-cycle:

$$\frac{4\cdot 3\cdot 2}{3}=8$$

- If there is a subgroup $H \leq A_4$ with |H| = 6 it would need to contain at least 2 3-cycle elements
- Fix $a \in A_4$ with |a| = 3 then ...

Orbit-Stabilizer Theorem

Definition: let G be a group and $g \in G$ then

$$\operatorname{Stab}_G(g) := \{g \in G : g(x) = x\}$$

Example: for $G = S_6$ and $H = \operatorname{Stab}_G(1)$ what is G/H

- Consider some left coset gH, if $h \in H$ then gh(1) = g(1)
- Conversely, suppose $g, k \in G$ satisfy $g(1) = k(1) = \ell$ for some $\ell \leq 6$ then

$$g^{-1}k(1) = g^{-1}(\ell) = 1 \implies g^{-1}k \in H \implies k \in gH$$

as a result hK = gH

• So left cosets of H in G are exactly sets of the form

$$\{g \in S_6 : g(1) = \ell\}$$
 for $\ell \in \{1, \dots, 6\}$

Theorem (*Orbit-Stabilizer Theorem*): let X be a set, $G \leq \text{Sym}(X)$ then for $x \in X$

$$|G| = |O_G(x)| \cdot |\operatorname{Stab}_G(x)|$$

Proof: we know that |G|/|H| = |G/H| so it suffices to find a bijection from G/H to $O_G(x)$

- $g, h \in G$ belongs the same left *H*-coset iff g(x) = h(x)
- Thus the map $F: G/H \to O_G(x)$ given by f(gH) = g(x) is well-defined and injective

• f is a bijction since if $O_G(x)$ then $\exists g \in G$ with g(x) = y so f(gH) = g(x) = y

Theorem: let G be a group. let $H, K \leq G$ be finite subgroups, then $|HK| = \{hk : h \in H, k \in K\}$

- Then $|HK| = |H| \cdot |K|/|H \cap K|$
- While HK may not be a group the $H \cap K$ is always a subgroup

Proof: form the cartesian product $H \times K$ (as sets) and the map $\pi : H \times K \to HK$ given by $\pi(h, k) = hk$

- π is surjective and we claim that π is $|H \cap K|$ -to-1
- Fix some $x = hk \in HK$ for every $t \in H \cap K$ then also $x = (ht)(t^{-1}k)$
- So if we have one way of representing x then we have $|H \cap K|$ other ways
- So $|\pi^{-1}(\{x\})| \ge |H \cap T|$
- Conversely, if x = h'k' for some $h' \in H$ and $k' \in K$ then

$$x = hk = h'k' \implies (k')^{-1}(k')^{-1}hk = 1_G \implies (h')^{-1}h = h'k^{-1} \in H \cap K$$

• set $t = h^{-1}(h') = k(k')^{-1}$ then h' = ht and $k' = t^{-1}k$

Theorem: if G a group and H, K are subgroups of G with at least one normal in G then

$$HK \leq G$$

Proof: suppose wlog that H is normal to G then HK = KH (which can be used to prove subgroup)

- show that $id_G \in HK$ and that HK is closed under composition and inverses
- the fact that HK = KH is used to show closed under inverses

Example: given a group of order 2p, p > 2 prime we have two groups of order 2p

$$\mathbb{Z}_{2p}$$
 D_{2p}

Theorem: up to isomorphism, these are the only groups of order 2p

Proof: let G be a group of order 2p

- If $\exists g \in G$ with |g| = 2p then $G \cong \mathbb{Z}_{2p}$
- Otherwise $\forall g \in G$ we have $|g| \neq 2p$
 - first a bit about D_{2p} generated by a rotation r of order p and a flip of order 2
 - Then $F \circ r = r^{p-1} \circ F$
- claim: G has an element of order p
 - In particular $\forall g \in G \ g = g^{-1}$ hence

$$gh = (gh)^{-1} = h^{-1}g^{-1} = hg$$

so G is abelian and any $g + h \in G \setminus \{1_G\}$ generate the subgroup

 $\{1_G, g, h, gh\}$

and nothing else (since closed under inverses $g = g^{-1}$, closed under product since everything has order 2)

- However this contradicts Lagrange's theorem since $4 \nmid 2p$
- Thus there is an element of p

• Fix $r \in G$ with |r| = p let $F \notin \langle r \rangle$

- If p then $|\langle r \rangle \cdot \langle F \rangle| = |\langle r \rangle| \cdot |\langle F \rangle| / |\langle r \rangle \cap \langle F \rangle| = p \cdot p/1 = p^2 > 2p$
- as the only proper subgroup of $\langle F \rangle$ is of order p or 1 because Lagrange
- so |F| = 2 and now consider $r \cdot F$ as

$$r \cdot F \not\in \langle r \rangle, \ |rF| = 2$$

so $(rF)^{-1} = rF$ but also $F^{-1} \circ r^{-1} = F \circ r^{p-1}$

- so $r \cdot F = F \cdot r^{p-1}$ then if a group has this then it is isomorphic to the dihedral group

Products

Definition: let G and H be groups their *direct product* is defined as

$$G \times H = \{(g,h) : g \in G, h \in H\}$$

• With two elements from $G \times H$ we have

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$$

• Textbook uses notation $G \oplus H$ but they are the same if working with finitely many groups.

Example: direct products are useful for creating new groups

• Cyclic groups: for positive integers m, n then

$$\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \quad \Longleftrightarrow \quad \gcd(m, n) = 1$$

• Unit groups: given positive integers m, n with gcd(m, n) then

$$\mathbb{U}_{mn}\cong\mathbb{U}_m\times\mathbb{U}_n$$

• Permutation groups: if X, Y disjoint sets, $G \leq \text{Sym}(X)$ and $H \leq \text{Sym}(Y)$ then

 $G \times H$ is isomorphic to a subgroup of $Sym(X \cup Y)$

Direct Products of Cyclic Groups

Warmup: groups of order 6: there are only two $S_3 = D_6$ and \mathbb{Z}_6

$$\mathbb{Z}_3 \times \mathbb{Z}_2 \cong \mathbb{Z}_6$$

(1,1) has order 6:

$$(1,1), (2,0), (0,1), (1,0), (2,1), (0,0)$$

Given positive integers m, n can try the same thing for $\mathbb{Z}_n \times \mathbb{Z}_n$: is (1, 1) a generator?

Theorem: $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic iff gcd(m, n) = 1**Proof:** first note that for any k, m, n and any $(a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n$

$$k \cdot (a, b) = (ka, kb)$$

so if both $n \mid k$ and $m \mid k$ then (a, b) has order of most k. In particular

$$|(a,b)| \le \operatorname{lcm}(n,m) = \frac{nm}{\operatorname{gcd}(n,m)}$$

- so if $gcd(m, n) \neq 1$ then no element of $\mathbb{Z}_m \times \mathbb{Z}_n$ has order mn
- if gcd(m, n) = 1 then (1, 1) has order exactly m, n (exercise)

by calegy's theorem every group can be represented as a subgroup of a permutation group

Let X, Y be disjoint sets $G \leq \text{Sym}(X)$ and $H \leq \text{Sym}(Y)$

Claim: $G \times H$ is isomorphic to a subgroup of $Sym(X \cup Y)$

Proof (*sketch*):

- we just need a injective homomorphim from $G \times H$ to $Sym(X \cup Y)$
- we can just take for $(a, b) \in G \times H$ that since they are disjoint they just do their own thing (since they are disjoint) as an element of $Sym(X \cup Y)$

Unit groups: given positive integers m, n with gcd(m, n) = 1 we have

$$\mathbb{U}_{mn} \cong \mathbb{U}_m \times \mathbb{U}_n$$

idea:

$$\psi: \mathbb{U}_{mn} \to \mathbb{U}_m \times \mathbb{U}_n$$

via $\phi(x) = (x \mod m, x \mod n)$ (exercise, or just check the book)

Gauss's Theorem

Theorem (*Gauss*):

- $\mathbb{U}_2 \cong \mathbb{Z}_1$
- $\mathbb{U}_{2^n} \cong \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_2$ for $n \ge 2$
- $\mathbb{U}_{p^n} \cong \mathbb{Z}_{p^n p^{n-1}}$ for odd p prime and $n \ge 1$

Isomorphism of Products

Given group G and subgroups $H, K \leq G$ when do we have $G \cong H \times K$?

Necessary conditions:

- G = HK
- $H \cap K = \{1_G\}$ (we cannot have repeats in $H \times K$???)
- elements of H commute with elements of K

$$(h, 1_K) \cdot (1_H, k) = (h, k) = (1_H, k) \cdot (h, 1_K)$$

• In particular, both H, K are normal subgroups of G

$$(h,k)(H \times \{1_K\})(h^{-1},k^{-1}) = hHh^{-1} \times \{kk^{-1}\} = H \times \{1_K\}$$

same for the reverse

these are actually also the sufficient conditions

Theorem: let G be a group and $H, K \trianglelefteq G$ are normal subgroups of G s.t. G = HK and $H \cup K = \{1_G\}$ then $G \cong H \times K$

Factor Maps

Recall that $\psi: G \to H$ is a homomorphism (map that repects group ops), then

$$\ker(\psi) := \{g \in G : \psi(g) = 1_H\} \trianglelefteq G$$

it turns out that every normal subgroup is the kernel of some homomorphism.

Lemma: G a group and $K \trianglelefteq G$ then for any $g, h \in G$,

$$gKhK = ghK$$

Proof: g(Kh)K = g(hK)K = ghK since K is normal so left and right cosets are the same

Definition: G a group and $K \leq G$ define a binary op on G/K via for $g, h \in G$

$$(gK) \cdot (hK) = ghK$$

Example: $G = \mathbb{Z}, K = 5\mathbb{Z}$, then

$$G/K = \{n + 5\mathbb{Z} : n \in \mathbb{Z}_5\}$$

given $a, b \in \mathbb{Z}$ then

$$(a+5\mathbb{Z}) + (b+5\mathbb{Z}) = (a+b) + 5\mathbb{Z}$$
$$= (a+b \mod 5) + 5\mathbb{Z}$$

Theorem: the binary operation from the previous definition is a group operation

Proof: we first mention that since multiplication on G is associative, also the binary operation on G/K is associative (exercise) so we at least have a semigroup

• if $gK \in G/K$ then

 $K \cdot gK = gK \cdot K = gK$

so $K = 1_{G/K}$ is a 2-sided id

• also $(gK)(g^{-1}K) = (g^{-1}K)(gK) = K$ so gK has 2-sided inverse

Theorem: G a group and $K \leq G$ then the map $\pi_K : G \to G/K$ given by

$$\pi_K(g) = gK$$

is a surjective hom with kernel ${\cal K}$

Proof: given $g, h \in G$

$$\pi_K(gh) = ghK = gK \cdot hK$$
$$= \pi_K(g)\pi_K(h)$$

- if $k \in K$ then $\pi_K(k) = kK = K$
- if $g \notin K$ then $\pi_K(g) = gK \neq K$ so

$$\ker(\pi_K) = K$$

Let G, H be groups and $\psi: G \to h$ be a homomorphism

Fact: $Im(\psi) \leq H$ a subgroup (exercise)

$$\operatorname{Im}(\psi) = \{\psi(g) : g \in G\}$$

Let $K = \ker(\psi)$, last time we produced a specific group G/K and homomorphism $\pi_K : G \to G/K$ with kernel K

First Isomorphism Theorem

Theorem (*First Isomorphism Theorem*): let $\psi : G \to H$ be a homomorphism then

$$G/\operatorname{Ker}(\psi) \cong H$$

Proof: assume ψ is surjective, i.e. $H = \text{Im}(\psi)$ and let $K = \text{Ker}(\psi)$

• Let $\sigma: G/\operatorname{Ker}(\psi) \to H$ be defined by

$$\sigma(gK) = \psi(g)$$

- to check that σ is well defined suppose $k \in K$ then for $g \in G$

$$\sigma(gkK) = \psi(gk) = \psi(g) \cdot \psi(k) = \psi(g) \cdot 1_H = \psi(g)$$

• Check σ is a bijection, as ψ is a surjection, so is σ

suppose $g_0, g_1 \in G$ are such that

$$\sigma(g_0K) = \sigma(g_1K) \iff \psi(g_0) = \psi(g_1) \iff \psi(g_0^{-1}g_1) = 1_H$$

i.e. $g_0^{-1}g_1 \in K$, this happens iff $g_0K = g_1K$ so σ injective

• σ respects group ops: let $g_0K, g_1K \in G/K$ then

$$\sigma(g_0K \cdot g_1K) = \sigma(g_0g_1K) = \psi(g_0g_1) = \psi(g_0 \cdot \psi(g_1) = \sigma(g_0K) \cdot \sigma(g_1K)$$

Example: let $\psi : \mathbb{Z} \to \mathbb{Z}_n$ be the homomorphism given by $\psi(m) = m \mod n$. ψ is surjective

$$\ker(\psi) = n\mathbb{Z}$$

so $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ (so they are the same up to isomorphism)

Example: let $\psi : S_n \to \mathbb{Z}_2$ be given by

$$\psi(g) = \begin{cases} 0 & \text{if } g \in A_n \\ 1 & \text{if } g \notin A_n \end{cases}$$

 ψ is a homomorphism (exercise) and $\operatorname{Ker}(\psi) = A_n$ so $S_n/A_n \cong \mathbb{Z}_2$

Example: consider D_8 , let $K \leq D_8$ be the subgroup of rotations.

$$|D_8/K| = 2$$
 so $D_8/K = \mathbb{Z}_2$

we are basically just forgetting all the rotations so the only thing we remember is if we flip the square or not

Recall given groups $K \leq G$ that the index of K in G is

$$|G:K| := |G/K|$$

Prop: let G be a group and $K \leq G$ on index 2 subgroup, then $K \leq G$

Proof: fix $g \in G$

- if $g \in K$ then gK = Kg
- if $g \notin K$ then $gK = \{g \in G : g \notin K\}$ and also $Kg = \{g \in G : g \notin K\}$ so gK = Kg

Definition: let $H \leq G$, the normalizer of H in G is the set $\{g \in G : gHg^{-1} = H\} = N_G(H)$ exercise: $N_G(H) \leq G$ and $H \leq N_G(H)$

Prop:

$$C_G(H) = \{g \in G : \forall h \in H \ ghg^{-1} = h\} \leq N_G(H)$$

furthermore

$$N_G(H)/C_G(H) \cong$$
 a subgroup of Aut(H)

Remark: this is just a subgroup veroisn of the result

$$G/Z(G) \cong \operatorname{Im}(G) \trianglelefteq \operatorname{Aut}(G)$$

Proof: define $\psi : N_G(H) \to \operatorname{Aut}(H)$ to be given by $\psi(g) = \phi_g$ where we recall that $\psi_g(h) = ghg^{-1}$

- this a homomorphism (easy to show)
- the kernel of ψ is $C_G(H)$ (exercise)
- then by First Iso Theorem (FIT) we are done

Last week: (first isomorphim theorem) if $\psi: G \to H$ is a surjective homomorphism and $K = \ker(\psi)$ then $H \cong G/K$

Normalizer

Definition: the *normalizer* of $H \leq G$ is the set

$$N_G(H) := \{ g \in G : gHg^{-1} = H \}$$

Lemma: $N_G(H) \leq G$ and that $C_G(H) \leq N_G(H)$

Proof: TODO

Theorem (Normalizer-Centralizer Theorem): if $H \leq G$ then

- There exists a homomorphism $\psi: N_G(H) \to \operatorname{Aut}(H)$ with $\ker(\psi) = C_G(H)$
- So we get $C_G(H) \leq N_G(H)$ and

 $N_G(H)/C_G(H) \cong$ some subgroup of Aut(H)

Proof: recall that $C_G(H) := \{g \in G : \forall h \in H, ghg^{-1} = h\}$ TODO

Example: every group of order $35 = 5 \times 7$ is cyclic

Proof: assume G is not cyclic (no element of order 35) towards a contradiction

- Begin by noting that every non-id group element has order 5 or 7 (by Lagrange)
- The number of elements $g \in G$ with order 5 is a multiple of $\phi(5) = 4$

- Since $4 \nmid 34$ we cannot have element of order 5

- Similarly $\phi(7) = 6$ is not a multiple of 34 so we cannot have every element of order 7
- Thus G has non-identity elements of both possible orders
- Let $H \leq G$ have order 7 (subgroup generated by taking an element of order 7)
 - If $K \leq G$ is a different subgroup of order 7 then we have

$$|HK| = |H| \cdot |K|/|H \cap K| = 49$$

as a result H is the *unique* subgroup of order 7

– We have $H \leq G$, i.e. $N_G(H) = G$, since H is cyclic and also

$$H \le C_G(H) \le G$$

since $|C_G(H)|$ divides 35 we have $C_G(H) = H$ or G

- * we know that H is the only subgroup of order 7 and gHg^{-1} is of order 7 so $gHg^{-1} = H$
- if $C_G(H) = G$ (every group element communates with elements of H) then take any non-id $h \in H$ and any $k \in G$ of order 5 (which must exist) and since h and k commute |hk| = 35 (wtf is this theorem, why do we need commute), which contradictions assumption that G is not cyclic
- otherwise if $C_G(H) = H$ then $N_G(H)/C_G(H)$ (normalizer mod centeralizer) has order 5 but by the normalizer-cenetralizer theorem (NC theorem) this is isomorphic to a subgroup of $\operatorname{Aut}(H)$ and $\operatorname{Aut}(H) \cong \mathbb{U}_7$ which is a group of size 6
 - so somehow we have found that a group of order 5 is isomorphic to a subgroup of a group(???) with an order of 6, so contradiciton!

Finite Abelian Groups

Theorem (Fundamental Theorem of Finite Abelian Groups): let G be an Abelian group with

$$|G| = p_1^{n_1} \cdots p_k^{n_k}$$

where p_i 's are prime and n_i are positive integers then

- $G \cong G_1 \oplus \cdots \oplus G_k$ where each G_i is cyclic and $|G_i| = p_i^{n_i}$
- The direct sum is unique up to rearranging and each G_i is unique up to isomorphism

Theorem (IDK): a finite Abelian group is isomorphic to a direct product of cyclic groups of prime-power order, where this decomposition is unique up to the order in which the factors are written

Proof: split up this to be proved into two parts *later*

Example: all Abelian groups of order 16 up to isomorphism

 $\mathbb{Z}_{16} \qquad \mathbb{Z}_4 \oplus \mathbb{Z}_4 \qquad \mathbb{Z}_2 \oplus \mathbb{Z}_8 \qquad \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4 \qquad \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$

The Fundamental theorem of Finite Abelian Groups is actually saying every finite Abelian group G is isomorphic to a direct product of cyclic groups of the form

$$\mathbb{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p_n^{\alpha_n}}$$

where p_i 's are primes but are not necessarily distinct (is each $G_i \cong \mathbb{Z}_p$???)

Corollary: if G is a finite Abelian group of order n and $d \mid n$ then $\exists H \leq G$ with |H| = d

- The converse of Lagrange's theorem holds
- Easy to show from the Fundamental Theorem (Corollary 8 in notes)
- Also recall that any subgroup of a cyclic group is also cyclic

distinctness of the stuff in example: let p be a prime and let n_1, \ldots, n_k, m be positive integers, then how many elements of order p^m are there in $\mathbb{Z}_{p^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{n_k}}$? (where $n_1 \leq n_2 \leq \cdots \leq n_k$)

- If $m > n_k$ then none (as we are looking at the lcm of the orders of the stuff)
- let $p \in \mathbb{Z}_{p^{n_k}}$ has order p^{n_k} , then so does $(0, 0, \dots, g) = \overline{g}$ let $H\langle \overline{g} \rangle$
 - then $G/H \cong \mathbb{Z}_{p^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{n_{k-1}}}$
 - inductively suppose we know the number of elements of every possible order in G/H

Example $G = \mathbb{Z}_8 \oplus \mathbb{Z}_9$, $H = \{0\} \oplus \mathbb{Z}_8$ then G/H has 4 elements of order 8, 1 of order 2, or 2 elements of order 4, 1 of order 1(???)

so taking these and adding another coordinate with an element of \mathbb{Z}_8

- order 8: 48
- order 4: 12
- order 2: 3
- order 1: 1

Monday: Finite Abelian groups

Theorem: let G be a finite Abelian group then G is isomorphic to a direct-product of cyclic groups each with prime power order. Furthermore, this decomposition is unique.

to start, focus on the case where $|G| = p^N$ for some prime p and $N \ge 1$

If G_1, \ldots, G_n have orders p^{m_1}, \ldots, p^{m_n} resp. how mnay elements of each possible order are there?

Example:

- consider \mathbb{Z}_{25} the possible orders are 1, 5, 25
 - 1 elements of order 1
 - -4 elements of order 5 (???)
 - -20 elements of order 25 (???)
- equivalently we can say that we have
 - 1 elements of order at most 1
 - 5 elements of order at most 5
 - 25 elements of order at most 25
- more generally, in \mathbb{Z}_{p^N} given $1 \leq k \leq N$ there are exactly p^k -many elements of order at most p^k , namely the multiples of $p^{N-k} \in \mathbb{Z}_{p^N}$

Proposition: fix a prime p and integers $m_1 \ge \cdots m_n \ge 1$ for the group

$$G = \mathbb{Z}_{p^{m_1}} \times \cdots \times \mathbb{Z}_{p^{m_n}}$$

given $k \ge 1$

- let $j \leq n$ be the largest with $m_j \geq k$ (if j exists or j = 0 when j does not exist).
- Then G has exactly $(p^{jk} \cdot p^{m_{j+1}} \cdots p^{m_n})$ -many elements of order at most p^k

Proof: recall that given groups G_1, \ldots, G_n and $g_i \in G$ for $i \leq n$ the order of $(g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$ is just the lcm of order of $g_i \in G$.

• if $G_i = \mathbb{Z}_{p^{m_i}}$ then (g_1, \ldots, g_n) has order $\leq p^k$ iff each g_i the formula now follows

Proposotion: fix p a prime and integers $m_1 \ge \cdots \ge m_n \ge 1$ and $a_1 \ge \cdots \ge a_\ell \ge 1$ write

$$G = \mathbb{Z}_{p^{m_1}} \times \cdots \times \mathbb{Z}_{p^{m_n}} \qquad H = \mathbb{Z}_{p^{a_1}} \times \cdots \times \mathbb{Z}_{p^{a_\ell}}$$

then $G \cong H$ iff $(m_1, \ldots, m_n) = (a_1, \ldots, a_\ell)$

Proof: obvious when equal, assume $(m_1, \ldots, m_n) \neq (a_1, \ldots, a_\ell)$

- if $|G| \neq |H|$ they cannot be isomorphic
- so let us assume $m_1 + \cdots + m_n = a_1 + \cdots + a_\ell$. let $j \ge 1$ be least with $m_j \ne a_n$ (note that $j \le \min\{n, \ell\}$) and assume $m_j < a_j$ WLOG
- now consider in G and in H the number of elements of order at most p^{m_j}
 - In G, this number is exactly $p^{j \cdot m_j} \cdot p^{m_{j+1}} \cdots p^{m_n}$
 - In H, this number is at most $p^{j \cdot m_j} \cdot p^{a_{j+1}} \cdots p^{a_{\ell}}$
- since $m_{j+1} + \cdots + m_n > a_{j+1} + \cdots + a_\ell$ (since $m_j < a_j$) we conclude that $G \not\cong H$

now work towards existence part of main thm, i.e. G can be written as a production of cyclic groups.

Lemma: say G Abelian of order p^n with p prime and $n \ge 1$. If $a \in G$ has max possible order, then $G \cong \langle a \rangle \times K$ for some $K \le G$ (where K could be written as a cyclic group)

Proof:

- if n = 1, then G is cyclic and we are done $G \cong G \times \{1\}$ (iso to itself direct product the trival subgroup) (since every group of prime order is cyclic)
- Now assume the proposition is true for groups of order p^k for k < n. fix $a \in G$ of max possible order, say $|a| = p^m$ for some $m \le n$. Might as well take m < n.
- Now choose a $b \notin \langle a \rangle$ (note that b cannot be identity) of least possible order
- claim: $\langle a \rangle \cap \langle b \rangle = \{1_G\}$
 - as $|b^p| = |b|/p$ we have $b^p \in \langle a \rangle$
 - say $b^p = a^i$ now $1_G = b^{p^m} = (a^i)^{p^{m-1}}$ so $|a^i| \le p^{m-1}$
 - so i = pj for some integer j
 - let $c = a^{-j}b$, we have $c \notin \langle a \rangle$ since $b \notin \langle a \rangle$
- so $c^p = a^{-jp}b^p = a^{-i}b^p = 1_G$ so |c| = p hence |b| = p and $\langle a \rangle \cap \langle b \rangle = \{1_G\}$
 - if there is a non-trival intersection then b must entirely intersect a due to the choice of b (???)
- Now form $\overline{G} = G/\langle b \rangle$. given $x \in G$ write \overline{x} for $x\langle b \rangle$
- note that $|\bar{a}| = p^m$ since if $\bar{a}^{p^{m-1}} = 1_G$, i.e. $a^{p^{m-1}} \in \langle b \rangle$, i.e. $a^{p^{m-1}} = 1_G$, contradiction (we assume that $|a| = p^m$)
- so \bar{a} as max possible order in \bar{G}
- by induction $\overline{G} \cong \langle \overline{a} \rangle \times \overline{k}$. we set

$$K = \{a \in G : \bar{x} \in K\}$$

where $\bar{x} = x \langle b \rangle$ (we claim this works but still need to check)

exercise: we claim $G = \langle a \rangle \cdot K$ and $\langle a \rangle \cap K = \{1_G\}$

Theorem (Abelian case of Cauchy's theorem): if G is a finite Abelian group and $p \mid |G|$ then G contains an element of order p

Proof: induction on |G|

• base case: for groups of size 1 there is nothing to show

- inductive hypo: let |G|=n>1 and assume this result holds for all finite Abelian group of order < n
- inductive step: fix $g \in G, g \neq 1_G$ we may assume that $p \nmid |g|$ (otherwise we are done?)
 - write $H = \langle g \rangle$ (noting that $p \nmid |H|$) then G/H is a smaller finite Abelian group with $p \mid |G/H|$
 - by induction, we may find $aH \in G/H$ with order p in G/H then p > 1 is least with $a^p \in H$
 - in particular |a| in G is a multiple of p
 - * suppose $a^{mp+r} = 1_G$ then $1_G \in a^r H \implies a^r \in H$ but r is too small (need to be at least p) so contradiction and must be multiple

Theorem (Fundamental Theorem of Finite Abelian Groups): if G is a finite Abelian group and

$$|G| = p_1^{n_1} \cdots p_k^{n_k}$$

with every p_i prime and $n_i \ge 1$ then

- 1. $G \cong G_1 \times \cdots \times G_k$ where all $|G_i| = p_i^{n_1}$ with all G_i are cyclic
- 2. This decomposition of G into cyclic groups of prime-power order is unique

Proof:

- Lemma: G a finite Abelian group of order $p^n \cdot m$ where p is prime, $n \ge 1$, and $p \nmid m$
 - then letting $H = \{g \in G : g^{p^n} = 1_G\}$ (g's order is a divides p^n ???) and $K = \{g \in G : g^m = 1_G\}$ then

$$G \cong H \times K$$
 and $|H| = p^n$

- **Proof**: as G is Abelian, $H, K \leq G$. we need to check $H \cap K = \{1_G\}$ and G = HK
 - if $a \in H \cap K$ then |a| divides p^n and |a| divides m, since p^n and m are relatively prime hence |a| = 1 so $a = 1_G$
 - fix $a \in G$ as $gcd(m, p^n) = 1$ by Bezoit's theorem we can find integers s, t with

$$sm + tp^n = 1$$

then $a = a^{sm} \cdot a^{tp^n}$ and we note that $(a^{sm})^{p^n} = 1_G$ and simularly $(a^{tp^n})^m = 1_G$ hence $a^{sm} \in H$ and $a^{tp^n} \in K$ so $a \in HK$ and $G \cong H \times K$

- to see that $|H| = p^n$ we have $|G| = |H| \cdot |K|/|H \cap K| = |H| \cdot |K|$
 - towards a contradiction, suppose $p \mid |K|$ and by Abelian Cauchy theorem there exists $g \in K$ of order p, by definition of K this is not possible

Cor (converse to Lagrange's theorem for finite Abelian groups): if G is a finite Abelain group and m is a positive integer with $m \mid |G|$ then \exists a subgroup $H \leq G$ with |H| = m

Proof (sketch): by the theorem if enough to show that this corollary holds for finite cyclic groups

• e.g. $G = \mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}_9$ how to create $H \leq G$ of order 6?

$$H = \mathbb{Z}_2 \times \{0\} \times 3\mathbb{Z}_3$$
$$H = \{0\} \times 4\mathbb{Z}_2 \times 3\mathbb{Z}_3$$

there will be some counting problems of this type

Group Actions

Groups were invented to capture how they *act* on other mathematical objects such as sets, vector spaces, topological spaces, combinatorial objects, etc.

Definition: let G a group and X a set, an group action of G on X is a map $\alpha : G \times X \to X$ satisfying:

- 1. $\forall x \in X, \ \alpha(1_G, x) = x$
- 2. $\forall x \in X \text{ and } \forall g, h \in G, \ \alpha(gh, x) = \alpha(g, \alpha(h, x))$

Notation: often if the action $\alpha : G \times X \to X$ is understood by context we just omit it:

- 1. $\forall x \in X, \ 1_G \cdot x = x$
- 2. $\forall x \in X \text{ and } \forall g, h \in G, (gh)x = g(hx)$

Examples:

1. G acts on X = G by left multiplication:

$$\alpha(g,h) = gh$$

2. G acts on X = G by right multiplication:

$$\alpha(g,h)=hg^{-1}$$

this is $\alpha: G \times G/H \to G/H$

3. if X is a set and $G \leq \text{Sym}(X)$ then G acts on X by application

$$\alpha(g, x) = g(x)$$

this leads to manyy natural examples of actions (we claim that all actions are just this in disjuise)

• if V a vector space and

$$G = \operatorname{Aut}(V) = GL(V)$$

GL is the general linear group (the set of all groups that perserve V???)

• if (X, d) is a metric space and G = Iso(X)

exercise: verify the above

• G acts on X = G by conjugation

$$\alpha(g,h) = ghg^{-1}$$

• if $H \leq G$, G acts on X = G/H by left mult

$$\alpha(g_0, g_1H) = g_0g_1H$$

Proposition: let G be a group and X a set. There is a 1-1 correspondence between

- Actions of G on X
- Homomorphisms from G to Sym(X)

Proof: produce a bijective mapping between actions and hom to prove 1-1 correspondence

- let $\alpha: G \times X \to X$ be an action. We define $\bar{\alpha}: G \to \operatorname{Sym}(X)$ via $\bar{\alpha}(g)(x) = \alpha(g, x)$
- now to check that $\bar{\alpha}$ looks like a hom

$$(\bar{\alpha}(g) \circ \bar{\alpha}(h))(x) = \bar{\alpha}(g)(\bar{\alpha}(h)(x))$$

= $\bar{\alpha}(g)(\alpha(h, x))$
= $\alpha(g, \alpha(h, x))$
= $\alpha(gh, x)$ (Prop 2 of actions)
= $\bar{\alpha}(gh, x)$

• now check that $\bar{\alpha}(g) \in \text{Sym}(X)$. we note that

$$\bar{\alpha}(g) \circ \bar{\alpha}(g^{-1}) = \bar{\alpha}(g^{-1}) \circ \bar{\alpha}(g)$$

= $\bar{\alpha}(1_G)$ (Prop 1 of actions)
= id_X

• Now suppose $\beta: G \to \operatorname{Sym}(X)$ is a hom. We define $\hat{\beta}: G \times X \to X$ via

$$\hat{\beta}(g,x) = \beta(g)(x)$$

- check that $\hat{\beta}$ is an action

- if $x \in X$ then

$$\hat{\beta}(1_G, x) = \beta(1_G)(x) = \mathrm{id}_X(x) = x$$

– Given $g, h \in G, x \in X$

$$\begin{split} \beta(gh,x) &= \beta(gh)(x) \\ &= (\beta(g) \cdot \beta(h))(x) \\ &= \beta(g)(\beta(h)(x)) \\ &= \hat{\beta}(g, \hat{\beta}(h,x)) \end{split}$$

exercise: check $\hat{\bar{\alpha}}=\alpha$ and $\bar{\hat{\beta}}=\beta$

now we can re-use the terminology about subgroups of Sym(X) when discussing actions, i.e.

• if $\alpha: G \times X \to X$ is an action and $x \in X$ then the α -orbit of x is

$$\{\alpha(g,x):g\in G\}$$

• and the α -stabilizer of $x \in x$ is

$$\{g \in G : \alpha(g, x) = x\} = \operatorname{Stab}_{\alpha}(x)$$

if α is understood we can omit the subscripts

Example:

- let G = D₈ ≤ S₄ (symmetrices of a square) (note that S₄ is permutations of 4 points)
 let C = {r, b} and X = functions from {1, 2, 3, 4} to C
 - i.e. coloring a square's vertices with red and blue
 - given $x \in X$ and $g \in D_8$ set

$$(g \cdot x)(i) = x(g^{-1}(i))$$

if $g = R_{90}$ then

$$(g \cdot x)(1) = x(g^{-1}(x)) = x(4) = b$$

 $(g \cdot x)(2) = x(g^{-1}(2)) = x(1) = r$

see jul 19 10:11 am for better view of example

- how many orbits? jul 19 10:15 am
 - * drop down to 6 equivalence classes

forming new actions from old ones

- set of colorings:
 - If $\alpha: G \times X \to X$ is an action and C is a set of colors
 - We obtain a new action of G on C^X (set of C colorings of X) via $(g \cdot f)(x) = f(g^{-1} \cdot x)$
 - picture jul 21 9:38pm
- let $G = S_n$, fix some $1 \le k \le n$
 - then $X = [n]^k = k$ -element subsets of $\{1, \ldots, n\}$
 - G acts on X in the obvious way, i.e. $g \cdot x = g[x]$
 - * notice that rather than sending a single element we send a set of points???
 - for every k there is only one orbit
 - we can use the orbit-stabilizer theorem: if $\alpha: G \times X \to X$ is an actoin then $\forall x \in X$

$$|G| = |O_{\alpha}(x)| \cdot |\operatorname{Stab}_{\alpha}(x)|$$

- * when $G = S_n$ then $X = [n]^k$ and |G| = n!
- * given $x \in [n]^k$ then $|\operatorname{Stab}_{\alpha}(x)| = k!(n-k)!$ (ways to permute our subset x without mixing points in x with those outside x)
- * so we get $|O_{\alpha}(x)| = n!/(k!(n-k)!) = {n \choose k} = |X|$

Polya-Burnside

Definition: if G a group, X a set, and $\alpha G \times X \to X$ an action then given $g \in G$

$$fix_{\alpha}(g) = \{x \in X : gx = x\}$$

Theorem (*Polya-Burnside*): let G a finite group, X a set, and $\alpha : G \times X \to X$ a action then

$$|\mathcal{O}_{\alpha}| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}_{\alpha}(g)|$$

where \mathcal{O}_{α} is set of orbits

Proof: consider the set

$$Y = \{(g, x) : g \in G, x \in fix_{\alpha}(g)\}$$

We will count Y in two different ways

• Method 1: consider $g \in G$, we obtain

$$|Y| = \sum_{g \in G} |\mathrm{fix}_{\alpha}(g)|$$

• Method 2: consider $x \in X$ (this means that $g \in \operatorname{Stab}_{\alpha}(x)$)

$$|Y| = \sum_{x \in X} |\operatorname{Stab}_{\alpha}(x)|$$
$$= \sum_{A \in \mathcal{O}_{\alpha}} \left(\sum_{x \in A} |\operatorname{Stab}_{\alpha}(x)| \right)$$

• For any $A \in \mathcal{O}_{\alpha}$ we recall that if $x, y \in A$ then

$$|\operatorname{Stab}_{\alpha}(x)| = |\operatorname{Stab}_{\alpha}(y)|$$

• So by the Orbit-Stablizer theorem for any $x \in A$

$$\sum_{x \in A} |\operatorname{Stab}_{\alpha}(x)| = |A| \cdot |\operatorname{Stab}_{\alpha}(x)| = |G|$$

• So now

$$|Y| = |\mathcal{O}_{\alpha}| \cdot |G|$$

hence

$$|\mathcal{O}_{\alpha}| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}_{\alpha}(g)|$$

Example: $\{R, B, G\}$ -colorings of $\{1, 2, 3, 4\}$ under D_8

- X =colorings then |X| = 81
- $|\operatorname{fix}_{\alpha}(\operatorname{id}_4)| = 81$
- $|\operatorname{fix}_{\alpha}(R_{90})| = |\operatorname{fix}_{\alpha}(R_{270})| = 3$

- as soon as we color two vertices differently we they get swapped by the rotation

• $|\operatorname{fix}_{\alpha}(R_{180})| = 9$

•
$$|\operatorname{fix}_{\alpha}(F)| = 9$$

• $|fix_{\alpha}(R_{90} \circ F)| = 27$

- $|\operatorname{fix}_{\alpha}(R_{180} \circ F)| = 9$
- $|\operatorname{fix}_{\alpha}(R_{270} \circ F)| = 27$
- then summing all the fix and dividing by size of group we get

$$168/8 = 21$$
 orbits

Last time: Polya Burnshide theorem: if G is a finite group and $\alpha: G \times X \to X$ is an action, then

$$|\mathcal{O}_{\alpha}| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{fix}_{\alpha}(g)|$$

Example:

- Given a circular tray with 6 holds and 2 colors of beads to place in the holes, how many different configs up to rotation of the tray
 - up to rotation: if we make a config then all the rotations of that config are considered the same config
 - our graph here provides the rotations: \mathbb{Z}_6
 - $-\mathbb{Z}_6$ acts on itslf by left addition $\rightsquigarrow \mathbb{Z}_6$ acts on $\{R, B\}^{\mathbb{Z}_6}$ (assign each point of \mathbb{Z}_6 a R or B) where given $m, n \in \mathbb{Z}_6$ and $\chi \in \{R, B\}^{\mathbb{Z}_6}$ then

$$(m \cdot \chi)(n) = \chi(-m+n)$$

(the action is written multiplicalitively and remember when converting to group element we get the inverse)

- Apply PB: count fix_{α}(m) for each $m \in \mathbb{Z}_6$
 - * how big is $\{R, B\}^{\mathbb{Z}_6}$? it is $2^6 = 64$ so

$$|\operatorname{fix}_{\alpha}(0)| = 64$$

* then if we apply the action 1 how many configurations don't change? only all R or all B

$$|\operatorname{fix}_{\alpha}(1)| = 2$$

* for rotations by 2 clicks we look at the cycles that are created (we see it creates 2 3-cycles)

$$|\operatorname{fix}_{\alpha}(2)| = 4$$

* for rotations by 3 clicks we get 3 2-cycles so

$$|\operatorname{fix}_{\alpha}(3)| = 8$$

* •••

 $|\operatorname{fix}_{\alpha}(4)| = 4$ $|\operatorname{fix}_{\alpha}(5)| = 2$

now by PB we have

$$|\mathcal{O}_{\alpha}| = \frac{1}{6} \sum_{m < 6} |\operatorname{fix}_{\alpha}(m)| = \frac{1}{6}(84) = 14$$

there are 14 different configurations up to rotation

- now suppose we are nable to precisely detect color and only know that two holes have different colored beads: e.g. 5 blue 1 red is the same as 5 red 1 blue
 - jul 24 9:56 am
 - identify the ste of colors with $S_2 = \mathbb{Z}_2$ then

$$\mathbb{Z}_2 \times \mathbb{Z}_6$$
 acts on $(\mathbb{Z}_2)^{\mathbb{Z}_6}$

where given $i \in \mathbb{Z}_2$ and $m, n \in \mathbb{Z}_6$ with $\chi \in (\mathbb{Z}_2)^{\mathbb{Z}_2}$ we set

$$((i,m)\cdot\chi)(n) = i + \chi(-m+n)$$

– we will also count this action as α and now begin to count

* when i = 0 we don't swap the colors so

$$|fix_{\alpha}(0,0)| = 64$$
$$|fix_{\alpha}(0,1)| = 2$$
$$|fix_{\alpha}(0,2)| = 4$$
$$|fix_{\alpha}(0,3)| = 8$$
$$|fix_{\alpha}(0,4)| = 4$$
$$|fix_{\alpha}(0,5)| = 2$$

* when we swap colors how many will get back to where we started

$$|\operatorname{fix}_{\alpha}(1,0)| = 0$$

(alternating something)

$$|\operatorname{fix}_{\alpha}(1,1)| = 2$$
$$|\operatorname{fix}_{\alpha}(1,2)| = 0$$

(need oppaciate holes to have oppaciate color)

$$|\operatorname{fix}_{\alpha}(1,3)| = 8$$
$$|\operatorname{fix}_{\alpha}(1,4)| = 0$$

(symmetry from (1,1)???)

$$\operatorname{fix}_{\alpha}(1,5)|=2$$

where does the symmetry some from??

- as a reuslt by PB we get

$$|\mathcal{O}_{\alpha}| = \frac{1}{12} \sum_{(i,j) \in \mathbb{Z}_2 \times \mathbb{Z}_6} |\operatorname{fix}_{\alpha}(i.j)| = \frac{1}{12} (96) = 6$$

if we where don't it with 3 colors we use S_3 instead of S_2 which we used here

• How many different ways are there to 3-color the edges of a regular tetrahedron up to symmetries fo a the tetrahedron?

$$Aut(tetrahedron) = A_4$$

(hold one point and rotate base gets 3-cycles) (rotate 2 points get 2 2-cycles)

$$-X = \{R, B, G\}^{([4]^2)}$$
 3⁶ = 729 what is [4]² and why does $|[4]^2 = 6|$

$$|\operatorname{fix}_{\alpha}(\operatorname{id}_4)| = 729$$

- if we fix one point then we basically create 2 3-cycles for the edges (3 colors for each cycle and $3^2=9)$

$$|\operatorname{fix}_{\alpha}(3\text{-cycle})| = 9$$

- todo

$$|\operatorname{fix}_{\alpha}(22 - \operatorname{cycle})| = 81$$

then by PB since $A_4 = |S_4|/2 = 4!/2 = 12$ we have (also there are

$$|\mathcal{O}_{\alpha}| = \frac{1}{12} \sum_{g \in A_4} |\operatorname{fix}_{\alpha}(g)| = \frac{1}{12} (729 + 9 \cdot 8 + 81 \cdot 3) = 87$$

since there are $\frac{4\cdot3\cdot2}{3} = 8$ 3-cycles and $\frac{\frac{4\cdot3}{2}\cdot\frac{2\cdot1}{2}}{2} = 3$ 2 2-cycles