PMATH 336: Introduction to Group Theory with Applications University of Waterloo Instructor: Andrew Zucker Spring 2023

Andrew Wang

Table of Contents

Introduction to Groups

Functions Review

Definition: given two sets *X* and *Y* let $f: X \to Y$ be a *function*

- *f* is an assignment (mapping) to each possible input $x \in X$ to some output $f(x) \in Y$
- *X* is the *domain* of *f*
- *Y* is the *codomain* of *f*
- $f[X] := \text{range}/\text{image of } f = \{f(x) : x \in X\}$

The function $f: X \to Y$ is called:

• **Injective** (one-to-one): when $\forall x_1, x_2 \in X$

$$
x_1 \neq x_2 \implies f(x_1) \neq f(x_2)
$$

• **Surjective** (onto): when $\forall y \in Y$

$$
\exists x \in X \text{ where } f(x) = y
$$

• **Bijective**: when *f* is both injective and surjective

Recall: if we are negating a statement we switch ∀ to ∃ and vice versa

Definition: for sets *X, Y, Z* the *composition* of functions $f: X \to Y$ and $g: Y \to Z$ is the function

$$
g \circ f : X \to Z
$$
 given by $(g \circ f)(x) = g(f(x))$

Theorem: function composition is *assocative*

• given sets W, X, Y, Z along with the functions $f: W \to X, g: X \to Y, h: Y \to Z$ we have

 $(h \circ q) \circ f = f \circ (q \circ f)$

Proof: two functions are equal when they produce the same output for all inputs

• Select an arbitrary $w \in W$ then

$$
((h \circ g) \circ f)(w) = (h \circ g)(f(w)) = h(g(f(w)))
$$

$$
(h \circ (g \circ f))(w) = h((g \circ f)(w)) = h(g(f(w)))
$$

• Since $(h \circ g) \circ f = h \circ (g \circ f)$ for arbitrary inputs, hence they are equal

Definition: given a set *X*, let X^X denote the set of functions of the form $f: X \to X$

Notice that: $f, g \in X^X \implies g \circ f \in X^X$

Semigroup, Monid, Group

Definition: Let *S* be a set, a *binary operation* on *S* is a function $b: S \times S \rightarrow S$

- Takes two elements from *S* as input and produces a element from *S* as output
- Written *multiplicatively* if given $s, t \in S$ then the output of $b(s, t)$ is denoted $s \cdot t$ (or just st)
- Written *additively* if given $s, t \in S$ then the output of $b(s, t)$ is denoted $s + t$

Thus for an operation to be a binary operation it must be closed under the set it acts on.

The following is a informal progression of increasing structure towards a group:

- *Magma*: set equipped with a single binary operation (closed by definition of binary operation)
- *Semigroup*: magma except the binary operation is also associative
- *Monoid*: semigroup except that the set contains an identity element
- *Group*: monoid except each element of the set has an inverse

Semigroup

Definition: a *semigroup* is a set *S* equipped with an associative binary operation, denoted (S, \cdot)

• The binary operation on *S* is *associative* if $\forall s, t, u \in S$

$$
s \cdot (t \cdot u) = (s \cdot t) \cdot u
$$

- $e_L \in S$ is a *left identity* of *S* if for every $t \in S$, we have $e_L \cdot t = t$
- $e_R \in S$ is a *right identity* of *S* if for every $t \in S$, we have $t \cdot e_R = t$
- $e \in S$ is a 2-sided identity (or just *identity*) of *S* if *e* is both a left and right identity of *S*

Theorem: suppose *S* is a semigroup and $e_L \in S$ a left identity with $e_R \in S$ a right identity

- $e_L = e_R$ as the 2-sided identity
- Semigroup may have at most one 2-sided identity.

Proof: consider the element $e_L \cdot e_R \in S$ then we have

$$
e_L \cdot e_R = e_R \quad \text{and} \quad e_L \cdot e_R = e_L \quad \implies \quad e_R = e_L
$$

Definition: given a semigroup (S, \cdot) a *subsemigroup* is a subset $T \subseteq S$ such that

• *T* is closed under the binary operation inherited from (S, \cdot)

$$
T \cdot T := \{ u \cdot v : u, v \in T \} \subseteq T
$$

Note that *T* is a semigroup in its own right.

Monoid

Definition: a *monoid* is a semigroup *S* which contains a (necessarily unique) 2-sided identity.

- When written multiplicatively we write the identity element as 1_S
- When written additively we write the identity element as 0*^S*
- If *S* is a monoid and $T \subseteq S$, then *T* is a *submonoid* of *S* if *T* is a subsemigroup of *S* and $1_S \in T$

Fact: (X^X, \circ) is a monoid with id_x (the identity function) as it 2-sided identity

- If $T \subseteq X^X$ is any subsemigroup, then $T \cup \{\text{id}_x\}$ is a monoid
- A subsemigroup $T \subseteq X^X$ can be monoid while not containing id_x, so T is not a submonoid of S

Facts: fix a function $f: X \to Y$ then

- *f* has a left inverse iff *f* is injective
- *f* has a right inverse iff *f* is surjective
- *f* has a 2-sided inverse iff *f* is bijective

If *f* has a 2-sided inverse it must be unique and we typically denote it as f^{-1} .

Definition: let *S* be a monoid with identity 1_S and fix $u \in S$

- $v \in S$ is a *left inverse* of *u* if $v \cdot u = 1_S$
- $v \in S$ is a *right inverse* of *u* if $u \cdot v = 1_S$
- $v \in S$ is a 2-sided inverse of *u* if *v* is both a left and right inverse of *u*

Theorem: Let *S* be a monoid and $u \in S$

- If $v_L, v_R \in S$ are left and right inverses of *u* then $v_L = v_R$
- It directly follows that *u* has at most one 2-sided inverse

Proof: consider the element $v_L \cdot u \cdot v_R$ since the binary operation is assocative the following are equivalent:

 $(v_L \cdot u) \cdot v_R = 1_S \cdot v_R = v_R$ and $v_L \cdot (u \cdot v_R) = v_L \cdot 1_S = v_L$

When $u \in S$ has a 2-sided inverse we denote that by u^{-1} .

Group

Definition: a *group* is a monoid with every element having a (necessarily unique) 2-sided inverse

Summary: a *group* is a set equiped by some operation where

- The set must must be closed under the operation
- The operation must be associative
- The set must contain an 2-sided identity element
- Every element in the set must have another element in the set that is its 2-sided inverse

Basic Properties of Groups

Definition (*Group*): a set *G* equipped with associative binary operation with:

- 2-sided identity $1_G \in G$ (i.e. for every $g \in G$ we have $1_G \cdot g = g = g \cdot 1_G$)
- *2-sided inverse* $g^{-1} \in G$ for every $g \in G$ (i.e. *g* $-1 \cdot g = 1_G = g \cdot g^{-1}$

Definition: an *Abelian group* (also called a *commutative group*) is a group where $\forall g, h \in G$

$$
g \cdot h = h \cdot g
$$

Definition: let set *X* be non-empty, the *symmetric group* on *X* is

$$
Sym(X) := \{ f \in X^X : f \text{ is bijective} \} \subseteq X^X
$$

- A bijection of the form $X \to X$ can be called a *permutation* of X
- Sym(*X*) may be called a *group of permuations of X*
- When $X = \{1, \ldots, n\}$ we write S_n

For a set of *n* elements there are *n*! permutations so $|S_n| = n!$.

Cancellative

Definition: for a semigroup *S* we say it is

• *Left cancellative* if for any $a, b, c \in S$

$$
ab = ac \implies b = c
$$

• *Right cancellative* if for any $a, b, c \in S$

$$
ba = ca \implies b = c
$$

• *Cancellative* if *S* is both left and right cancellative

Theorem: if *G* is a group then *G* is cancellative

Proof: to prove this we show that *G* is both left and right cancellative

• Suppose that $a, b, c \in S$ satisfies $ab = ac$, then since *G* is a group we multiply by inverse $a^{-1} \in G$

$$
ab = ac \implies a^{-1}ab = a^{-1}ac \implies b = c
$$

• Suppose that $a, b, c \in S$ satisfies $ba = ca$, then since *G* is a group we multiply by inverse $a^{-1} \in G$

 $ba = ca \implies baa^{-1} = caa^{-1} \implies b = c$

Thus *G* is both left and right cancellative so it is cancellative.

Order

Definitions:

- *Order of group G* is the size of set $|G|$ (or ∞ if *G* is infinite)
- *Order of element* $g \in G$ is the least positive number *n* with $g^n = 1_G$ $($ or ∞ if no such *n* exists)

Lemma: Let *G* be a finite group then every $g \in G$ has finite order

Proof: consider the finite set $\{g^n : n \in \mathbb{N}\}\subseteq G$ (note: $0 \in \mathbb{N}$ for this class)

- $|G| = n$ is finite, so there must exist some $m \geq n$ where $g^m = g^n$ for $n \in \{0, \ldots, n-1\}$
- Then $g^n \cdot g^{-m} = g^{n-m} = 1_G$ and it follows that *g* has order $N = n m$ which is finite

Subgroups

Definition: for *G* a group, a *subgroup* is a subset $H \subseteq G$ is also a group (under the same operation)

- *Subsemigroup*: associatively and $a, b \in H \implies ab \in H$
- *Identity*: there exists $1_H \in H$ such that $1_H a = a = a 1_H$ for all $a \in H$
- *Inverse*: given $g \in H$ we require $g_H^{-1} \in H$ such that $g_H^{-1}g = 1_H = gg_H^{-1}$

We write $H \leq G$ to denote that *H* is a subgroup of *G*

Lemma: let *G* be a group and $H \leq G$ a subgroup, then $1_H = 1_G$ **Proof**: since *H* is a subgroup we have $u = (1_H)^{-1}$ (invese of $1_H \in G$) then

$$
1_G = u \cdot 1_H = u \cdot (1_H \cdot 1_H) = (u \cdot 1_H) \cdot 1_H = 1_G \cdot 1_H = 1_H
$$

Lemma: if *G* is a group and $H \le G$ is a subgroup, then for $g \in H$ we have $g_H^{-1} = g^{-1}$ (so $g^{-1} \in H$) **Proof**: take $g \in H$ and use $1_H = 1_G = 1$ from earlier (don't assume group is Abelian)

$$
g_H^{-1}g = 1_H = 1_G = 1
$$
 and $gg_H^{-1} = 1_H = 1_G = 1$ \rightarrow $g_H^{-1} = g^{-1} \in H$

Definition: let *G* be a group, then a *subgroup* $H \leq G$ must satisfy:

- *Subsemigroup*: $a, b \in H \implies ab \in H$ (and associative)
- *Identity*: $1_G \in H$
- *Inverse:* $g \in H \implies g^{-1} \in H$

Examples of Groups

Symmetric Group

$$
Sym(X) := \{ f \in X^X : f \text{ is bijective} \}
$$

 $f \in Sym(x)$ is a bijection of the form $f : X \to X$ and can also be called a permuation of X.

We write S_n to denote $Sym(X)$ when $X = \{1, \ldots, n\}$ and $|S_n| = n!$ (S_n contains $n!$ elements)

- *S*⁰ and *S*¹ each contain exactly one element (groups with one element are called *trivial*)
- *S*₂ contains the identity and an element to swap 1 and 2 which we denote by (12)
	- **−** Notice that $(12)^2 := (12) \circ (12) = id_2$ so we can create a *multiplication table*:

 S_2 is Abelian but S_n in general is not.

 $-$ By convention the entry in the table in row *g* and column *h* is the element $g \circ h$

We will now consider *S*³ which has 6 elements and can be described in *cycle notation* as the set:

$$
S_3 = \{id_3, (12), (23), (13), (123), (132)\}
$$

- (12) denotes ther permutation of {1*,* 2*,* 3} which swaps 1 and 2 and leaves 3 fixed
- (123) sends $1 \to 2$, $2 \to 3$, $3 \to 1$ and (132) sends $1 \to 3, 3 \to 2, 2 \to 1$
- Composition of permuations described in this notation is requires some practice

Example: $(12) \circ (13) = (132)$

This can be seen by considering what $(12) \circ (13)$ does on every possible input:

$$
((12) \circ (13))(1) = (12)(3) = 3
$$

$$
((12) \circ (13))(2) = (12)(2) = 1
$$

$$
((12) \circ (13))(3) = (12)(1) = 2
$$

	id_3	(12)	(23)	(13)	(123)	(132)
id_3	id_3	(12)	(23)	(13)	(123)	(132)
(12)	(12)	id_3	(123)	(132)	(23)	(13)
(23)	(23)	(132)	id_3	(123)	(13)	(12)
(13)	(13)	(123)	(132)	id_3	(12)	(23)
(123)	(123)	(13)	(12)	(23)	(132)	id_3
(132)	(132)	(23)	(13)	(12)	id_3	(123)

The full multiplication table for S_3 (note that on row *g* column *h* is the entry $g \circ h$)

• Notice that $gh = hg$ is not always satisfied so S_3 is not Abelian.

– An example of this can be seen with (13) and (12)

$$
((12) \circ (13))(\{1, 2, 3\}) = (12)(\{3, 2, 1\}) = \{3, 1, 2\} \rightarrow (12) \circ (13) = (132)
$$

$$
((13) \circ (12))(\{1, 2, 3\}) = (13)(\{2, 1, 3\}) = \{2, 3, 1\} \rightarrow (13) \circ (12) = (123)
$$

- **–** Notice that (123) is the same as (231) and (312)
- id₃ appears in an entry for each row and in each column

every row as has an id \xleftrightarrow $\forall g \in G \exists h \in G \; gh = id \iff$ every element has a right inverse every column has an id $\iff \forall g \in G \exists h \in G \; hg = id \iff$ every element has a left inverse

• There are also no repeats in any row or column which corresponds to being cancellative

$$
(\forall g, h_0, h_1 \in G \qquad h_0 \neq h_1 \implies h_0 g \neq h_1 g_1) \iff \text{right cancelling}
$$

$$
(\forall g, h_0, h_1 \in G \qquad h_0 \neq h_1 \implies gh_0 \neq gh_1) \iff \text{left cancelling}
$$

note this is the contrapositive of the definition of cancellative.

*S*³ is a group so the last two observations should not be surprising but it is nice to get a concrete example.

Remark: elements of *S*³ correspond to symmetrices of a triangle's rotations and flips

• In general however *Sⁿ does not* correspond to symmetrices of an *n*-gon

Dihedral Group

*D*_{2*n*} = {*f* ∈ *S*_{*n*} : ∀*i*, *j* ∈ {1, . . . , *n*}*, i* ∼ *j* ∈→ *f*(*i*) ∼ *f*(*j*)}

The Dihedral group D_{2n} is a subgroup of S_n where the permutation respects the *edges*

- For a more concrete understanding imagine *n* points arranged in a circle
	- **–** *Sⁿ* is if you are allowed to swap any point with any other point
	- D_{2n} is if adjacent vertices must remain adjacent vertices after the mapping
- This is much more restrictive and we find that $|D_{2n}| = 2n$ while $|S_n| = n!$
- Note that most literature use D_n to mean the same thing as our D_{2n}

We will inspect D_8 which is the group of symmetries of a square (4-gon)

$$
D_8 = \{ f \in S_4 : \forall i, j \in \{1, 2, 3, 4\}, i \sim j \iff f(i) \sim f(j) \}
$$

- We have vertices labelled $1, 2, 3, 4$
- We also have the edge relations $1 \sim 2$, $2 \sim 3$, $3 \sim 4$, $4 \sim 1$
	- **–** note: for *a, b* ∈ {1*,* 2*,* 3*,* 4} having *a* ∼ *b* also means we have *b* ∼ *a* and we also take *a* ∼ *a*
- There are 8 elements of D_8 which are

$$
D_8 = \{ id_4, R_{90}, R_{180}, R_{270}, F, R_{90} \circ F, R_{180} \circ F, R_{270} \circ F \}
$$

- **–** *Rⁿ* denotes rotate *n* degrees
- **–** *F* denotes flip (any flip that does not move the square is fine)
- $R_n \circ F$ denotes flip then rotate *n* degrees

Let us verify $D_8 \leq S_4$. begin by letting $i, j \in \{1, 2, 3, 4\}$

• Subsemigroup: $f, g \in D_8$

$$
i \sim j \iff g(i) \sim g(j) \quad \text{(as } g \in D_8)
$$

$$
\iff f(g(i)) \sim f(g(j)) \quad \text{(as } f \in D_8)
$$

Hence $f \circ g \in D_8$

• Identity $id_4 \in D_8$

$$
i \sim j \iff i = \mathrm{id}_4(i) \sim \mathrm{id}_4(j) = j
$$

• Inverse: if $f \in D_8$ consider $f^{-1} \in S_4$ (show that $f^{-1} \in D_8$)

$$
f^{-1}(i) \sim f^{-1}(j) \iff f(f^{-1}(i)) \sim f(f^{-1}(j)) \qquad (f \in D_8)
$$

$$
\iff i \sim j \qquad (f \circ f^{-1} = id_4)
$$

which shows that $f^{-1} \in D_8$

Additive Group of Integers Modulo *n*

Let $\mathbb{Z}_n := \{i \in \mathbb{N} : 0 \leq i < n\}$ then given $a, b \in \mathbb{Z}_n$ we set

$$
a + b = i \mod n \iff a + b = i + cn
$$
 for some $c \in \mathbb{Z}$

- Proof of associative is trivial
- This group is Abelian because normal addition is commutative
- The 2-sided identity is 0 and given $i \in \mathbb{Z}_n$ the $-i$ (inverse) is

$$
-i = \begin{cases} 0 & \text{if } i = 0\\ n - 1 & \text{if } i \neq 0 \end{cases}
$$

- As a result we know that $(\mathbb{Z}_n, +)$ is a group
- For $a \in \mathbb{Z}_n$ what are the possible values for $|a|$?
	- **–** e.g. for 3*,* 4 ∈ Z⁶ then |4| = 3 (4*,* 2*,* 0) and |3| = 2 (3*,* 0)
	- $-$ We know that $m \leq n$ is a possible order iff $m \mid n$

Other related groups:

- (Z*,* +) is an *additive* group (Abelian and every *non-zero* element has order ∞)
- $(\mathbb{R}, +)$ is an *additive* group

Multiplicative Group of Integers Modulo *n* **and Unit Group**

Let $\mathbb{Z}_n := \{i \in \mathbb{N} : 0 \leq i < n\}$ then given $a, b \in \mathbb{Z}_n$ we set

 $a \cdot b = i \mod n \iff a \cdot b = i + cn$ for some $c \in \mathbb{Z}$

- Proof of associative is trivial
- This group is Abelian because normal multiplication is commutative
- The 2-sided identity is 1
- 0 will never have an inverse so (\mathbb{Z}_n, \cdot) is not a group when $n \geq 2$
	- **–** another failure: in Z4, 2 does not have an inverse

Lemma (*Bézout*): let $a, b \in \mathbb{Z}$ then $\exists x, y \in \mathbb{Z}$ such that

$$
\gcd(a, b) = ax + by
$$

• If $gcd(m, n) = 1$ there would exist some $x, y \in \mathbb{Z}$ such that

 $1 = mx + ny \rightarrow 1 = mx \mod n$

This means that *m*'s inverse *x* will exist if $gcd(m, n) = 1$

• If *x* is *m*'s inverse then $1 = mx + ny$ and letting $g = \gcd(m, n)$ then

 $g \mid m$ and $g \mid n \implies g \mid mx + ny \implies g \mid 1$

Since only 1 and -1 divides 1 the only choice is that $gcd(m, n) = 1$ (since gcd can't be negative) As a result, $m \in \mathbb{Z}_n$ has a multiplicative inverse iff $gcd(m, n) = 1$

Definition: the *unit group* is the subset $\mathbb{U}_n \subseteq \mathbb{Z}_n$ of elements with a multiplicative inverse:

 $\mathbb{U}_n = \{m \in \mathbb{Z}_n : \gcd(m, n) = 1\}$

- e.g. $\mathbb{U}_7 = \{1, 2, 3, 4, 5, 6\}$
- e.g. $\mathbb{U}_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}$

Notice that when *p* is prime then $\mathbb{U}_p = \{1, \ldots, p-1\}$

Free Group

The *free group* on 2 generators F_2 is built from the formal symbols $\{a, a^{-1}, b, b^{-1}\}$

- A word over this alphabet is just a finite string of the symbols
- The *reduced word* over this alphabet is a word where no more cancellation is possible
	- $-$ *aa*⁻¹, *a*⁻¹*a*, *bb*⁻¹, *b*⁻¹*b* can all be cancelled into into identity 1
	- **–** every word is *equivalent* to some unique reduced word
	- **–** e.g. *abaa*−¹ *b* [−]1*ab* → *abb*−1*ab* → *aab*

The *free group* F_2 is the set of reduced words under the operation of concatenation and reduction

- e.g. $(aab) \cdot (b^{-1}ab) = aaab$
- The identity is the empty word
- Inverse is flipping the word and inverting all the symbols

$$
-
$$
 e.g. $(ab)^{-1} = b^{-1}a^{-1}$

This group is not Abelian and every non-identity element has infinite order

Infinite Dihedral Group

The *infinite dihedral group* D_{∞} is the set of reduced words built from the formal symbols $\{a, b\}$

- This time we let *a* and *b* as their own inverse symbol and use the same reduction rule
	- $aa = 1 = bb$ then $|a| = 2 = |b|$
	- $-$ e.g. *baab* = 1 = *abba*
	- $-$ e.g. $|ab| = \infty = |ba|$
	- $-$ e.g. $aaababb \rightarrow ababb \rightarrow aba$
- The identity is once again the empty string
- Inverse of a given string is produced by flipping the string backwards

$$
-
$$
 e.g. $(ab)^{-1} = ba$

This group is not Abelian but notice that it is a infinite group with elements of finite order

The finite dihedral group D_{2n} denotes the symmetries of an *n*-gon so what do elements of D_{∞} act on?

- A shape with ∞ edges (∞ -gon) is a infinite line up and down wich each vertex labelled
- Applying *a* flips the line at the point just above 0
- Applying *b* flips the line at 0
- *ab* shifts the line 1 slot upwards (*ba* shifts the line one slot downwards)

Say that $|D_{\infty}| = \infty$ while many elements have order 2 and many others have order ∞

Subgroups and Generators

Subgroup Tests

Proposition (*one-step subgroup test*): suppose *G* is a group, then $H \leq G$ if *H* is *non-empty* and

- *H* is a subsemigroup of *G*
- *H* is closed under inverses

Proof: just need to show that $1_G \in H$

- Since $H \neq \emptyset$, fix any $g \in H$
- Using *H*'s closure under inverses we also must have $g^{-1} \in H$
- As $H \subseteq G$ is a subsemigroup (closed under composition) we have

$$
g^{-1} \cdot g = 1_G \in H
$$

Proposition (*finite subgroup test*): suppose *G* is a *finite* group, then $H \leq G$ if *H* is *non-empty* and

• *H* is a subsemigroup of *G*

Proof: just need to show that *H* is closed under inverses

- Since $H \neq \emptyset$, fix any $g \in H$
- Then to show that $g^{-1} \in H$ we use G is finite and find $|g| = n \in \mathbb{N} \setminus \{0\}$

- If
$$
n = 1
$$
 then $g = 1_G = g^{-1}$

 $-$ If *n* ≥ 2 then $g^{n-1} \cdot g = 1_G = g \cdot g^{n-1}$ so we get $g^{n-1} = g^{-1} \in H$

Generators

Definitions: let *G* be a group and $X \subseteq G$

- $\langle X \rangle_s$ denotes *subsemigroup generated by* X, which is the smallest subsemigroup of G containing X
- $\langle X \rangle$ denotes *subgroup generated by* X, which is the smallest subgroup of G containing X

Proposition: let *G* be a group and $X \subseteq G$ then

1. $\langle X \rangle_s = \{x_1^{n_1} \cdots x_m^{n_m} : x_1, \ldots, x_m \in X; \ m, n_1, \ldots, n_m \in \mathbb{N} \setminus \{0\}\}\$ 2. $\langle X \rangle = \{x_1^{n_1} \cdots x_m^{n_m} : x_1, \ldots, x_m \in X; \ m \in \mathbb{N}; \ n_1, \ldots, n_m \in \mathbb{Z}\}\$

Proof: we have $1_G \in \langle X \rangle_s$ and $1_G \in \langle X \rangle$ since we an take $m = 0$

1. To show $\langle X \rangle_s$ is a subsemigroup take some $x_1^{n_1} \cdots x_m^{n_m}$, $y_1^{k_1} \cdots y_\ell^{k_\ell} \in \langle X \rangle_s$

• Consider the product $x_1^{n_1} \cdots x_m^{n_m} \cdot y_1^{k_1} \cdots y_\ell^{k_\ell}$ by renaming y_j to x_{m+j} and k_j to n_{m+j} then

$$
x_1^{n_1} \cdots x_{m+\ell}^{n_{m+\ell}} \in \langle X \rangle_s
$$

so $\langle X \rangle_s$ is a subsemigroup

- 2. To show $\langle X \rangle$ is a group we use the one-step subgroup test
	- By the same argument as (1) we get that $\langle X \rangle$ is a subsemigroup
	- To show that $\langle X \rangle$ is closed under inverses, let $x_1^{n_1} \cdots x_n^{n_m} \in \langle X \rangle$ then

$$
(x_1^{n_1} \cdots x_m^{n_m})^{-1} = x_m^{-n_m} \cdots x_1^{-n_1} \in \langle X \rangle
$$

so $\langle X \rangle$ is a group

These are the smallest since they are produced from taking products of elements and inverses of *X*

Remarks:

- If $\langle X \rangle = G$ then we say that *X* generates *G*
- When $X = \{g_1, \dots, g_k\}$ for some $g, \dots, g_k \in G$ we usually write $\langle g_1, \dots, g_k \rangle$ for $\langle \{g_1, \dots, g_k\} \rangle$
- When $X = \{g\}$ for some $g \in G$ then $\langle g \rangle$ is the *cyclic subgroup* generated by $g \in G$

Examples:

• Consider the group $(\mathbb{Z}, +)$

$$
\langle 15, -10 \rangle = 5\mathbb{Z} = \{ 5n : n \in \mathbb{Z} \}
$$

since $gcd(15, -10) = 5$

• Consider the group $D_8 = \{id_4, R_{90}, R_{180}, R_{270}, F, R_{90} \cdot F, R_{180} \cdot F, R_{270} \cdot F\}$

$$
\langle R_{90} \rangle = \{id_4, R_{90}, R_{180}, R_{270}\}\
$$

via the finite subgroup test $\langle R_{90} \rangle_s = \langle R_{90} \rangle$ the set is finite

• Consider the free group on 2 generators $F_2 = \langle a, b \rangle$

$$
\langle ab, a \rangle = F_2
$$

since $a^{-1}ab = b$ so we have $\{a, b\}$ to construct any element of F_2

Center, Centralizer, Commutator Subgroups

Definitions: let *G* be a group then

• *Center* of *G* (subset of *G* that is Abelian)

$$
Z(G) := \{ g \in G : \forall h \in G, \ gh = hg \}
$$

 $-$ Note that $gh = hg \iff g = hgh^{-1} \iff g = h^{-1}gh$

• *Centralizer* of subset $S \subseteq G$ in G (subset of G that is Abelian with S)

$$
C_G(S) := \{ g \in G : \forall h \in S, \ gh = hg \}
$$

- Note that $C_G(G) = Z(G)$
- **–** If *S* = {*g*} for some *g* ∈ *G* we write *CG*(*g*) instead of *CG*({*g*})

• *Commutator* of some given $a, b \in G$ is the group element

$$
[a,b] := a^{-1}b^{-1}ab
$$

(this notation does not denote an interval)

- note that $ab = ba \cdot [a, b]$
- **–** this tells use how far the elemenets are from being commutative
- $-$ if *a, b* are commuative then $[a, b] = 1_G$
- *Commutator subgroup* of *G* (sometimes called the *derived subgroup*) is

$$
[G, G] := \langle [a, b] : a, b \in G \rangle
$$

 $([G, G]$ is the subgroup generated by commutators)

Fact: for a group *G* the following are equivalent:

- *G* is Abelian
- $Z(G) = G$
- $[G, G] = \{1_G\}$

Examples:

• Consider *D*⁸

 $C_{D_8}(F)$ has id₄, F , R_{180} and add $R_{180}F$ because the set needs to be a subgroup

$$
C_{D_8}(F) = \{id_4, F, R_{180}, R_{180} \circ F\}
$$

– *CD*⁸ (*R*90) contains all rotations because that is the cyclic subgroup generated by *R*⁹⁰

$$
C_{D_8}(R_{90}) = \{id_4, R_{90}, R_{180}, R_{270}\}\
$$

 $-$ Since $D_8 = \langle R_{90}, F \rangle$ we have

$$
Z(D_8) = C_{D_8}(F) \cap C_{D_8}(R_{90}) = \{id_4, R_{180}\}\
$$

In general for non-empty subsets $A_1, \ldots, A_k \subseteq G$ if we have $G = \langle A_1, \ldots, A_k \rangle$ then

$$
Z(G) = C_G(A_1) \cap \cdots \cap C_G(A_k)
$$

In order for $a \in Z(G)$ it would need to commute $\forall g \in G$ so it should show up in every $C_G(A_i)$

$$
C_G(S) := \{ g \in G : \forall h \in S, \ gh = hg \}
$$

• Consider $F_2 = \langle a, b \rangle$ we claim that $Z(F_2) = \{1_{F_2}\}\$

 $−$ Let $w \in F_2$ be a non-trivial reduced word, say $w = y_1 \cdots y_n$ with $y_i \in \{a, b, a^{-1}, b^{-1}\}$ $-$ Let $x \in \{a, b, a^{-1}, b^{-1}\}$ be chosen so $x \neq y_1$ and $x \neq y_1^{-1}$ then

$$
xw = xy_1 \cdots y_n
$$

∗ If $n = 1$ then $wx = y_1x$ is reduced and $xw ≠ wx$ since $xy_1 ≠ y_1x$

∗ If *n* ≥ 2 then *wx* even after reducing still starts with the same letter as *w*

· *xw* specifically does not start with the same letter as *w* so we must have $xw \neq wx$ as a result we can say that $w \not\in Z(G)$

Isomorphisms, Cyclic Groups, Permutation Groups

Isomorphisms

Definitions: Let *G* and *H* be groups

• An *isomorphism* is a bijection $\psi : G \to H$ which respects the group operations:

$$
\forall a, b \in G \qquad \psi(a \cdot b) = \phi(a) \cdot \phi(b)
$$

 $- a \cdot b$ uses the group operation from *G* while $\phi(a) \cdot \phi(b)$ uses the group operation from *H*

• *G* and *H* are *isomorphic* (written $G \cong H$) if there is an isomorphism from *G* to *H* (or vice versa)

Remark: we can have isomorphisms between groups written additively and multiplicatively:

$$
\psi(a+b) = \psi(a) \cdot \psi(b)
$$

Proposition: let *G* and *H* be groups and ψ : $G \rightarrow H$ be an isomorphism, then

- 1. $\psi^{-1}: H \to G$ is also an isomorphism
- 2. $\psi(1_G) = 1_H$
- 3. $\forall g \in G$ we get $\psi(g^{-1}) = \psi(g)^{-1}$

Proofs:

1. ψ^{-1} is clearly a bijection so we just need to check that it respects the group operations

• Let $h_0, h_1 \in H$, then since ψ is an isomorphism

$$
\psi(\psi^{-1}(h_0) \cdot \psi^{-1}(h_1)) = \psi(\psi^{-1}(h_0)) \cdot \psi(\psi^{-1}(h_1)) = h_0 \cdot h_1
$$

$$
\psi(\psi^{-1}(h_0 \cdot h_1)) = h_0 \cdot h_1
$$

• Since ϕ is a bijection these outputs can only be the same iff the inputs are the same so

$$
\psi^{-1}(h_0) \cdot \psi^{-1}(h_1) = \psi^{-1}(h_0 \cdot h_1)
$$

2. Let $a \in G$ and $b \in H$ where $\psi(a) = b$ then

$$
b = \psi(a \cdot 1_G) = a \cdot \psi(1_G)
$$

$$
b = \psi(1_G \cdot a) = \psi(1_G) \cdot a
$$

since $\psi(1_G)$ is a (necessarily unique) 2-sided inverse then $1_H = \psi(1_G)$

3. Let $a \in G$ then

$$
\psi(a^{-1}) \cdot \psi(a) = \psi(a^{-1}a) = 1_H = \psi(a)^{-1} \cdot \psi(a) \implies \psi(a^{-1}) = \psi(a)^{-1}
$$

Proposition: if *G, H, K* are groups with $G \cong H$ and $H \cong K$ then $G \cong K$

Proof: let ψ : $G \to H$ and φ : $H \to K$ be isomorphisms. to show that

$$
\varphi \circ \psi : G \to K
$$

is an isomorphism we observe that it is a bijection. Then consider $a, b \in G$

$$
\varphi \cdot \psi(a \cdot b) = \varphi(\psi(a \cdot b))
$$

= $\varphi(\psi(a) \cdot \psi(b))$
= $\varphi(\psi(a)) \cdot \varphi(\psi(b))$
= $(\varphi \circ \psi(a)) \cdot (\varphi \circ \psi(b))$

Keep in mind that there are three different group operations present in the above.

Cyclic Groups

Definition: a group *G* is *cyclic* if there exists $a \in G$ with $G = \langle a \rangle$

We have two examples for cyclic groups (and all other cyclic groups are isomorphic to these)

- 1. $(\mathbb{Z}, +) = \langle 1 \rangle$
- 2. $(\mathbb{Z}_n, +) = \langle 1 \rangle$ for $n \in \mathbb{N} \backslash \{0\}$

Remark: all cyclic groups are Abelian but not all Abelian groups are cyclic

Theorem: let $G = \langle a \rangle$ be a cyclic group then $|G| = |a|$

• Order of $a \in G$ denoted $|a| = n \ge 1$ is the lowest value with $a^n = 1_G$ (or ∞ if no such *n* exists)

Proof: by definition we have $\langle a \rangle = \{a^n : n \in \mathbb{Z}\}\$

• If $|a| = \infty$

− If |*G*| is finite then for some $m, n \in \mathbb{Z}$ with $m < n$ there exists $a^m = a^n$ however

$$
a^m = a^n \iff 1_G = a^{n-m}
$$

but $n - m \in \mathbb{N}\backslash\{0\}$ contradicting that |*a*| has infinite order so $|G| = \infty$

• If
$$
|a| = n \in \mathbb{N} \setminus \{0\}
$$

 $−$ If $|G|$ $\lt n$ then for some $i, j \in \{0, \ldots, n-1\}$ with $j < i$ there exists $a^j = a^i$ however $a^j = a^i \iff 1_G = a^{i-j}$

but $i - j < n$ contradicts that $|a| = n$ so we must have $|G| \geq n$

– Noting that every *m* ∈ Z satisfies *m* = *nq* + *r* for some *q* ∈ Z and *r* ∈ {0*, . . . , n* − 1} then

$$
a^m = a^{nq} \cdot a^r = (a^n)^q \cdot a^r = 1_G \cdot a^r = a^r
$$

this says that $|G| \leq n$ which combined with the previous point shows that $|G| = n$

Theorem: let $G = \langle a \rangle$ be a cyclic group then

- If $|a| = \infty$ then $G \cong (\mathbb{Z}, +)$
- If $|a| = n \in \mathbb{N} \setminus \{0\}$ then $G \cong (\mathbb{Z}_n, +)$

Proof:

- 1. Define $\psi : \mathbb{Z} \to G$ via $\psi(m) = a^m$
	- from proof of $|G| = |a|$ we argued if $|a| = \infty$ then for all $m, n \in \mathbb{Z}$ with $m < n$ we get $a^m \neq a^n$
	- from that we get that ψ is an injection and also surjective by definition of $\langle a \rangle$
	- ψ is bijective so just need to show it respects the group operations to be an isomorphism

$$
\forall m, n \in \mathbb{Z} \qquad \psi(m+n) = a^{m+n} = a^m \cdot a^n = \psi(m) \cdot \psi(n)
$$

- 2. Assume $|a| = n$ with $n \in \mathbb{N} \setminus \{0\}$ and define $\psi : \mathbb{Z}_n \to G$ via $\psi(m) = a^m$
	- from proof of $|G| = |a|$ we argued that for all $m, n \in \{0, \ldots, n-1\}$ with $m < n$ that $a^m \neq a^n$
	- from that we get that ψ is an injection
	- since ψ is an injection from one finite set another set of the same size, ψ is a bijection
	- with ψ bijective we just need to check that ψ respects group operations, so fix $k, \ell \in \mathbb{Z}_n$ $-$ if $k + \ell < n$ then

$$
\psi(k + \ell \mod n) = \psi(k + \ell)
$$

$$
= a^{k + \ell}
$$

$$
= a^k \cdot a^{\ell}
$$

$$
= \psi(k) \cdot \psi(\ell)
$$

– if *k* + *ℓ* ≥ *n* then

$$
\psi(k + \ell \mod n) = \phi(k + \ell - n)
$$

= $a^{k+\ell-n}$
= $a^k \cdot a^{\ell} \cdot a^{-n}$ (note: $a^{-n} = (a^n)^{-1} = 1_G$)
= $\psi(k) \cdot \psi(\ell)$

Theorem: every subgroup of a cyclic group is cyclic

Proof:

- Consider subset *X* ⊆ Z
	- **–** gcd(*X*) = *d* ∈ N is the greatest number that divides every *x* ∈ *X*
	- **–** by Bézout's identity for *x*1*, . . . , xⁿ* ∈ *X* there exists *a*1*, . . . , zⁿ* ∈ Z with

$$
d = a_1 x_1 + \dots + a_n x_n
$$

this means that $d \in \langle X \rangle$ and hence $\langle d \rangle \subseteq \langle X \rangle$

- **–** also if *m* ∈ ⟨*X*⟩ then, since *d* | *x* for *x* ∈ *X*, we must have *d* | *m* so *m* ∈ ⟨*d*⟩ thus ⟨*d*⟩ = ⟨*X*⟩
- Consider subset $X \subseteq \mathbb{Z}_n$
	- **–** just like above we have gcd(*X*) = *d* ∈ N and *a*1*x*¹ + · · · + *anxⁿ* = *d* ∈ ⟨*X*⟩ so ⟨*d*⟩ ⊆ ⟨*X*⟩
	- **–** if *m* ∈ ⟨*X*⟩ then, since *d* | *x* for *x* ∈ *X*, we must have *d* | *m* + *qn* for some *q* ∈ Z
	- since $m + qn = m \mod n$ we conclude that $m \in \langle d \rangle$ thus $\langle d \rangle = \langle X \rangle$

Euler's Totient Function

Definition: *Euler's phi function* $\phi : \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ defined by

$$
\phi(d) := |\{k \in \mathbb{N} \setminus \{0\} : k < d \text{ and } \gcd(k, d) = 1\}|
$$

Remark: usually refered to as *Euler's totient function* in the literature

Example: $\phi(8) = |\{1, 3, 5, 7\}| = 4$

Theorem: fix $n \in \mathbb{N}\backslash\{0\}$ and consider \mathbb{Z}_n

1. If $d \in \mathbb{Z}_n$ and $d | n$ then

$$
\langle d \rangle = \{0, d, 2d, ..., n-d\}
$$
 and $|d| = \frac{n}{d}$

2. For any $a \in \mathbb{Z}_n$ we have

$$
\langle a \rangle = \langle \gcd(a, n) \rangle
$$

3. Given $a, b \in \mathbb{Z}_n$ we have

$$
\langle a \rangle = \langle b \rangle \iff \gcd(a, n) = \gcd(b, n)
$$

Proof:

- 1. Since $\frac{n}{d} \cdot d = 0$ mod *n* we definitely have $|d| \leq \frac{n}{d}$
	- for $|d| \geq \frac{n}{d}$ we know that for all $k \in \mathbb{N} \setminus \{0\}$ with $k < \frac{n}{d}$ we have $0 < kd < n$ so we get $|d| = \frac{n}{d}$ *d*
- 2. Write $d = \gcd(a, n)$ as $a = qd$ for some $q \in \mathbb{Z}$ and directly get $\langle a \rangle \subseteq \langle d \rangle$
	- to show that $d \in \langle a \rangle$ we use Bézout's identity to say there exists $k, \ell \in \mathbb{Z}$ with $d = ka + \ell n$
	- then $d = ka + \ell n = ka \mod n$ and $d \in \langle a \rangle$ so hence $\langle a \rangle = \langle d \rangle$
- 3. the right to left implication follows directly from (2)
	- for the converse suppose $gcd(a, n) \neq gcd(b, n)$ then by (1)

$$
|\langle \gcd(a, n)\rangle| = \frac{n}{\gcd(a, n)} \neq \frac{n}{\gcd(b, n)} = |\langle \gcd(b, n)\rangle|
$$

since the cyclic subgroups have different sizes by (2) we have $\langle a \rangle \neq \langle b \rangle$

Corollary: if *G* finite cyclic group and *d* | *n* then *G* has exactly one subgroup *H* of order *d*

Proof: we may assume that $G = \mathbb{Z}_n$ (because conclusion of corollary is preserved by isomorphism)

- For existance of $H \leq G$ with order *d* we let $H = \langle \frac{n}{d} \rangle$ $\frac{n}{d}$
	- then since $\frac{n}{d} \mid n$ by part 1 of the previous theorem $\mid \frac{n}{d} \mid$ $\left| \frac{n}{d} \right| = n / \frac{n}{d} = d$ and we get $|H| = \left| \frac{n}{d} \right|$ $\frac{n}{d}$ | = *d*
- For uniqueness consider some subgroup $K \leq G$ with $|H| = d$
	- **–** for some *a* ∈ Z*ⁿ* we have *H* = ⟨*a*⟩ and by part 2 of previous theorem ⟨*a*⟩ = ⟨gcd(*a, n*)⟩
	- $-$ for $|\langle \gcd(a, n) \rangle| = d$ by part 1 of previous theorem then $\gcd(a, n) = n/d$ thus $K = H$

Corollary:

1. If *G* is a cyclic group of order $n \in \mathbb{N} \setminus \{0\}$ then

$$
|\{g \in G : \langle g \rangle = G\}| = \phi(n)
$$

2. If *G* is a cyclic group of order $n \in \mathbb{N} \setminus \{0\}$ and $d \ge 1$ divides *n* then

$$
|\{a \in G : |a| = d\}| = \phi(d)
$$

3. If *G* is *any* finite group and $d \in \mathbb{N} \backslash \{0\}$

 $|\{a \in G : |a| = d\}|$ is a multiple of $\phi(d)$

Proof: for parts (1) and (2) we work with $G = \mathbb{Z}_n$

1. Given $a \in \mathbb{Z}_n$ we know $\langle a \rangle = \langle \text{gcd}(a, n) \rangle$ so

$$
\langle a \rangle = G = \langle 1 \rangle \iff \gcd(a, n) = 1
$$

and the number of such $a \in \mathbb{Z}_n$ is exactly $\phi(n)$

2. Any $a \in \mathbb{Z}_n$ with $|a| = d$ belongs to *unique* subgroup of order *d* generated by $\langle \frac{n}{d} \rangle$ $\frac{n}{d}$

We then just apply part (1) to this subgroup

3. Consider the collection

$$
X = \{ H \le G : H \cong \mathbb{Z}_d \}
$$

every $a \in G$ of order *d* belongs to at least one memory of X, namely $\langle a \rangle$

- Inside each $H \in X$ there are exactly $\phi(d)$ -many elements of order *d* by part (2)
- If $H_0, H_1 \in X$ and $a \in H_0 \cap H_1$ has order *d* then $\langle a \rangle = H_0 = H_1$ hence

$$
|\{a \in G : |a| = d\}| = |X| \cdot \phi(d)
$$

Permutation Groups

Recall: permutation groups are subgroups of the symmetric group.

- Given a set X, we write $Sym(X)$ for the group of permuations of X (bijections from X to itself)
- If $X = \{1, \ldots, n\}$ for some $n \in \mathbb{N} \setminus \{0\}$ we write S_n for the symmetric group

Definitions: let *X* be a set, and fix $\sigma \in \text{Sym}(X)$

- Subset $Y \subseteq X$ is σ -*invariant* if $\sigma[Y] = Y$
- Given $y \in X$, the *σ*-*orbit* of *y* is the smallest *σ*-invariant set containing *y*

$$
O_{\sigma}(y) := \{ \sigma^m(y) : m \in \mathbb{Z} \}
$$

- **–** the cycle created by repeatedly applying *σ* to *y*
- The *support* of σ is the σ -invariant set

$$
supp(\sigma) := \{ y \in X : \sigma(y) \neq y \}
$$

– the set of all *y* ∈ *X* that was moved by *σ*

Proposition:

1. Supposing $\sigma, \theta \in \text{Sym}(x)$ have disjoint supports then

$$
\sigma\circ\theta=\theta\circ\sigma
$$

- 2. Suppose $\sigma \in \text{Sym}(X)$ and that $\text{supp}(\sigma) = Y \cup Z$ with *Y* and *Z* disjoint, non-empty, and σ -invariant
	- then there are $\sigma_Y, \sigma_Z \in \text{Sym}(X)$ with

$$
supp(\sigma_Y) = Y
$$
, $supp(\sigma_Z) = Z$ and $\sigma = \sigma_Y \circ \sigma_Z = \sigma_Z \circ \sigma_Y$

Proof:

1. Given $x \in X$ we have

$$
\sigma \circ \theta(x) = \theta \circ \sigma(x) = \begin{cases} x & \text{if } x \notin \text{supp}(\sigma) \cup \text{supp}(\theta) \\ \sigma(x) & \text{if } x \in \text{supp}(\sigma) \\ \theta(x) & \text{if } x \in \text{supp}(\theta) \end{cases}
$$

Remark: this fails if the supports are *not disjoint*

2. Define $\sigma_Y, \sigma_Z \in \text{Sym}(X)$ where given $x \in X$, we have

$$
\sigma_Y(x) = \begin{cases} x & \text{if } x \notin Y \\ \sigma(x) & \text{if } x \in Y \end{cases} \qquad \sigma_Z(x) = \begin{cases} x & \text{if } x \notin Z \\ \sigma(x) & \text{if } x \in Z \end{cases}
$$

Now we check that σ_Y and σ_Z are bijections.

• Consider $\sigma^{-1} \in \text{Sym}(X)$ and define $(\sigma^{-1})_Y : X \to X$ via

$$
(\sigma^{-1})_Y(x) = \begin{cases} x & \text{if } x \notin Y \\ \sigma^{-1}(x) & \text{if } x \in Y \end{cases}
$$

As *Y* is σ -invariant it is also σ^{-1} -invariant (verify that $(\sigma^{-1})_Y = (\sigma_Y)^{-1}$)

- We can say that σ_Y is invertible and thus a bijection (similar argument for σ_Z)
- Notice that $\text{supp}(\sigma_Y) = Y$ and $\text{supp}(\sigma_Z) = Z$ and so

$$
\sigma_y \circ \sigma_z(x) = \sigma_z \circ \sigma_y(x) = \begin{cases} x & \text{if } x \notin Y \cup Z = \text{supp}(\sigma) \\ \sigma(x) & \text{if } x \in Y \\ \sigma(x) & \text{if } x \in Z \end{cases}
$$

since they are disjoint we get $\sigma_Y \circ \sigma_Z = \sigma$

Proposition: let $\sigma \in \text{Sym}(X)$ then given $x, y \in X$ either

$$
O_{\sigma}(x) = O_{\sigma}(y)
$$
 or $O_{\sigma}(x) \cap O_{\sigma}(y) = \emptyset$

Proof: suppose $z \in O_{\sigma}(x) \cap O_{\sigma}(y)$, we will show that $O_{\sigma}(x) = O_{\sigma}(y) = O_{\sigma}(z)$

- Write $z = \sigma^m(x)$ for some $m \in \mathbb{Z}$, so we also have $x = \sigma^{-m}(z)$
- Given $u \in O_{\sigma}(x)$ we have $u = \sigma^{n}(x)$ for some $n \in \mathbb{Z}$, so we also have

$$
u = \sigma^n(\sigma^{-m}(z)) = \sigma^{n-m}(z) \in O_{\sigma}(z)
$$

• Given $v \in O_{\sigma}(z)$ we have $v = \sigma^{k}(z)$ for some $k \in \mathbb{Z}$, so we also have

$$
v = \sigma^k(\sigma^m(x)) = \sigma^{k+m}(x) \in O_{\sigma}(x)
$$

• Hence $O_{\sigma}(x) = O_{\sigma}(z)$ and we can make a simular proof for $O_{\sigma}(y) = O_{\sigma}(z)$

Permutation Cycles

Definitions: let $\sigma_1, \sigma_2 \in \text{Sym}(X)$

- *Cycle* is any $\sigma \in \text{Sym}(X)$ with exactly one *non-trivial* orbit (i.e. of size > 1)
- *Size* of a cycle is the size of its unique non-trivial orbit
- *Disjoint* when if cycles $O_1, O_2 \subseteq X$ denotes unique non-trival orbits of σ_1, σ_2 then $O_1 \cup O_2 = \emptyset$

Theorem: any $\sigma \in S_n$ can be written as the product of *finitely many pairwise-disjoint cycles*

- We call such a product the *disjoint cycle form of σ*
- The full disjoint cycle form is unique

Proof: let $X = \{O_i : i \leq k\}$ list all non-trivial orbits of σ_i

- Since each O_i is a subsets of $\{1, \ldots, n\}$ then *X* is also finite
- Now perform induction on *k* where the inductive step is handled by earlier proposition

Theorem: let $\sigma = \sigma_k \cdots \sigma_1 \in S_n$ be written in disjoint cycle form, then letting $n_i = |\text{supp}(\sigma_i)|$

$$
|\sigma| = \operatorname{lcm}(n_i : i \le k)
$$

(i.e. lowest common multiple of the non-trivial orbit sizes)

Proof: given $m \in \mathbb{Z}$ then since disjoint cycles commute we have

$$
\sigma^m=\sigma^m_k\circ\cdots\circ\sigma^m_1
$$

- The order of each σ_i is n_i , so if *m* is a common multiple of each n_i , then $\sigma^m = id_n$
- Conversely, if *m* was not a multiple of some n_i then $\sigma_i^m \neq \text{id}_n$ which results in

$$
\sigma^m(x) = (\sigma_k^m \cdots \sigma_1^m)(x) \neq x
$$

• Thus it follows that for any $x \in \text{supp}(\sigma_i)$ that $\sigma^m(x) \neq x$

Example:

• What are the possible orders of elements of S_8 ?

 $−$ we know that $|σ| = \text{lcm}(n_i : i ≤ k)$ and need $\sum_{i ≤ k} n_i ≤ 8$ so the possible orders are

$$
8, 7, 6, 5, 15, 10, 4, 12, 3, 6, 2, 1
$$

- How many elements in *S*⁴ have order 4?
	- **–** We have 4 ways to partition 8 such that $\text{lcm}(n_i : i \leq k) = 4$

$$
4+4 \qquad 4+2+2 \qquad 4+2+1+1 \qquad 4+1+1+1
$$

– Now we count the number of cycles of length *k* we have

$$
cycle(n,k):=\frac{n!}{(n-k)!k}
$$

- ∗ there are $n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$ partial lists of length *k* in list of length *n*
- ∗ partial list is ordered tuple and don't want choosing unordered subsets: $n \choose k = \frac{n!}{(n-k)!}$ (*n*−*k*)!*k*!

∗ we want to preserve order but allow rotations to represent the same element

$$
(1234) = (2341) = (3412) = (4123)
$$

so there are *k* ordered tuples that represent the same cycle and $\frac{n!}{(n-k)!k}$

– Using this we can count:

∗ 4 + 4: 4-cycles picking order does not matter

$$
\frac{\frac{8 \cdot 7 \cdot 6 \cdot 4}{4} \cdot \frac{4 \cdot 3 \cdot 2 \cdot 1}{4}}{2} = 1260
$$

 $*$ 4 + 2 + 2: 2-cycles picking order does not matter

$$
\frac{\frac{8 \cdot 7 \cdot 6 \cdot 4}{4} \cdot \frac{4 \cdot 3}{2} \cdot \frac{4 \cdot 3}{2}}{2} = 1260
$$

 $* 4 + 2 + 1 + 1: 2520$

 $* 4 + 1 + 1 + 1 + 1: 420$

 $-$ As a result we conclude that S_8 contains exactly $1260 + 1260 + 420 + 5460$ elements of order 4

Fact: every $\sigma \in S_n$ can be written as a product of 2 cycles (cycles of length 2)

• However unlike our disjoint cycle form which is unique, this product is not unique

Proposition: fix $n \in \mathbb{N}\backslash\{0\}$. If $id_n = \alpha_r \cdots \alpha_1$ with each α_i a 2-cycle, then *r* is even **Proof**: we will prove by induction on *r* (TODO)

Corollary: for any $\alpha \in S_n$ if $\sigma = \alpha_r \cdots \alpha_1 = \beta_s \cdots \beta_1$ where the α_i and β_j are 2-cycles then

 $r \equiv s \mod 2$

Proof: $\beta_1 \cdots \beta_s \alpha_r \cdots \alpha_1 = id_n$ so $r + s$ is even (the inverse of a 2-cycle is itself)

Alternating Groups

Definition: *alternating group* A_n is a subgroup of S_n which is defined as

 $A_n := \{ \sigma \in S_n : \sigma \text{ can be written with an even number of 2-cycles} \}$

Proposition: if $\sigma \in S_n$ and $\sigma = \sigma_k \circ \cdots \circ \sigma_1$ is the disjoint cycle form. Let $n_i = |\text{supp}(\sigma_i)|$ then

$$
\sigma
$$
 even \iff $(n_1 + \cdots + n_k) - k$ even

Proof: each n_i -cycle can be written as a product of $(n_i - 1)$ -many 2-cycles, i.e.

$$
(a_1 \cdots a_{n_i}) = (a_1 a_2)(a_2 a_3) \cdots (a_{n_i-1} a_{n_i})
$$

Thus σ can be written as a product of $(n_1 + \cdots + n_k) - k$ 2-cycles

Proposition: for every $n \geq 2$

$$
|A_n| = \frac{n!}{2} = \frac{|S_n|}{2}
$$

Proof: fix some 2-cycle $g \in S_n$ then consider $\lambda_g : S_n \to S_n$ given by $\lambda_g(h) = gh$ which is a bijection.

- If $h \in A_n$ then $gh \notin A_n$
- If $h \notin A_n$ then $gh \in A_n$
- Hence $\lambda_g[A_n] = S_n \setminus A_n$ (set subtraction) and since λ_g is a bijection we must have $|A_n| = |S_n \setminus A_n|$

$$
|S_n| = |A_n| + |S_n \backslash A_n| = 2|A_n| \quad \implies \quad |A_n| = |S_n|/2
$$

Cayley's Theorem

Theorem (*Cayley's Theorem*): for any group *G*, there is a set *X* and subgroup $H \leq \text{Sym}(X)$ with $G \cong H$

• In fact, we can take $X = G$

Proof: for each $g \in G$, let $\lambda_g : G \to G$ be defined via $\lambda_g(h) = gh$.

• We know that $\lambda_y \in \text{Sym}(G)$ so define

$$
\lambda: G \to \text{Sym}(G) \quad \text{via } \lambda(g) = \lambda_g
$$

• To see that λ is injective, fix $g \neq h \in G$ and consider λ_g and λ_h on input 1_G

$$
\lambda_g(1_G) = g
$$
 and $\lambda_h(1_G) = h \implies \lambda_g \neq \lambda_h$

• To see that λ repects group ops, fix $g, h \in G$ and consider $\lambda_g \circ \lambda_h$ and λ_{gh} , fix some $k \in G$ then

$$
\lambda_g \circ \lambda_h(k) = \lambda_g(hk) = ghk \qquad \lambda_{gh}(k) = ghk
$$

as a result

$$
\lambda_g \circ \lambda_h = \lambda_{gh}
$$

For "isomorphic to subgroup of" it suffices to find injection $G \to \text{Sym}(X)$ which respects group operations

Automorphisms, Conjugation, Normality, Cosets

Automorphisms

Definition: let *G* be group, an *automorphism* of *G* is an isomorphism from *G* to itself.

- Let $Aut(G) \subseteq Sym(G)$ denote the collection of automorphisms of *G*
- For every group, the identity map $id_G: G \to G$ is an automorphism, hence $Aut(G) \neq \emptyset$

Proposition: for any group *G*, $Aut(G) \le Sym(G)$ is a subgroup

Proof: we know that $id_G \in Aut(G)$

- Also recall that the composition of two isomorphisms is also an isomorphism
	- **–** so the composition of two automorphisms is also an automorphism (monoid)
- In addition, the inverse of an isomorphism is also isomorphic
	- **–** so the inverse of an automorphism is an automorphism (group)

Example: the map $\sigma : \mathbb{Z} \to \mathbb{Z}$ is given by $\sigma(n) = -n$ is an automorphsim of \mathbb{Z}

• An isomorphism must send generators to generators so 1 must go to either 1 or −1

Propostion: $\text{Aut}(\mathbb{Z}_n) \cong \mathbb{U}_n$

Proof: let $\sigma \in \text{Aut}(\mathbb{Z}_n)$

• Notice that if we can find $\sigma(1) = a$ then this information completely determines σ by

$$
\sigma(k) = \sigma(k \cdot 1) = k \cdot \sigma(1) = a \cdot k
$$

– *σ* just becomes a multiplication by *a*

- Define $\sigma_a : \mathbb{Z}_n \to \mathbb{Z}_n$ via the mapping $\sigma_a(k) = a \cdot k$
- Every element of $\text{Aut}(\mathbb{Z}_n)$ has the form σ_a for some $a \in \mathbb{Z}_n$
- Find find that the mapping σ_a is bijective iff $gcd(a, n) = 1$ (i.e. if $a \in \mathbb{U}_n$) so

$$
Aut(\mathbb{Z}_n) = \{\sigma_a : \in \mathbb{U}_n\}
$$

• Now we check that this is isomorphic to \mathbb{U}_n by considering the map $\psi : \mathbb{U}_n \to \text{Aut}(\mathbb{Z}_n)$ given by

$$
\psi(a)=\sigma_a
$$

• We find that for $a, b \in \mathbb{U}_n$ we have

$$
\psi(ab) = \sigma_{ab} = \sigma_a \circ \sigma_b = \psi(a) \circ \psi(b)
$$

Conjugation

Definition: fix a group *G*, given $g \in G$ we define $\phi_g : G \to G$ via $\phi_g(x) := g \circ g^{-1}$

- We call $\phi_g(x) = gxg^{-1}$ the left *conjugate* of *x* by *g*
- We saw similar notation of conjugate $x^g = g^{-1}xg$ which is more-or-less equivalent to $^gx = gxg^{-1}$
- The intuition for this is the action of *x* viewed in the perspective of *g*

Proposition: let *G* be a group then $\phi_q \in \text{Aut}(G)$

Proof: first note that $\phi_{q^{-1}}$ is a 2-sided inverse of ϕ_g , showing that ϕ_g is bijective. Now fix $x, y \in G$ then

$$
\phi_g(xy) = gxyg^{-1} = gx(g^{-1}g)yg^{-1} = \phi_g(x) \cdot \phi_g(y)
$$

Definition: given a group *G* we call $\psi \in Aut(G)$ an *inner automorphism* if there is $g \in G$ with $\psi = \phi_g$

$$
\operatorname{Inn}(G) := \{ \phi_g : g \in G \} \subseteq \operatorname{Aut}(G)
$$

denotes the collection of inner automorphisms of *G*.

Proposition: $\text{Inn}(G) \leq \text{Aut}(G)$

Proof: we already know that $\text{Inn}(G) \subseteq \text{Aut}(G)$ so

• Just need to verify that $id_G = \phi_{1_G}$, that $\phi_g \circ \phi_h = \phi_{gh}$, and that $(\phi_g)^{-1} = \phi_{g^{-1}}$

Homomorphism

Definition: given groups *G* and *H*, a map ψ : $G \to H$ is a *homomorphism* if for every $x, y \in G$ we have

$$
\psi(x \cdot y) = \psi(x) \cdot \psi(y)
$$

- Note that the mapping does not have to be a bijection (or even injection/surjection)
- Every isomorphism is a homomorphism
	- **–** since the definition of a homomorphism is a direct weakening of that of isomorphism

Lemma: let *G*, *H* groups and ψ : *G* \rightarrow *H* be a homomorphism

• Then $\psi(1_G) = 1_H$ and for every $g \in G$ we have $(\psi(g))^{-1} = \psi(g^{-1})$

Proof: for all $q \in G$

$$
\psi(g) = \psi(1_G \cdot g) = \psi(1_G) \cdot \psi(g) \implies 1_H = \psi(1_G)
$$

$$
1_H = \psi(1_G) = \psi(g^{-1}g)\psi(g^{-1}) \cdot \psi(g) \implies (\psi(g))^{-1} = \psi(g^{-1})
$$

Proposition: the map ϕ : $G \to \text{Inn}(G)$ is an isomorphism iff $Z(G) = \{1_G\}$

- Recall that the center of a group is the set of group elements that commute with everything
- Furthermore, we have $\phi_g = \phi_h$ iff $g^{-1}h \in Z(G)$

Proof:

- Recall that $\text{Inn}(G) := \{\phi_q : g \in G\}$ where $\phi_q(x) = gxg^{-1}$
- The map $\phi: G \to \text{Inn}(G)$ defined via $\phi(g) = \phi_g$ is a homomorphism since for $g, h \in G$

$$
\phi(gh) = \phi_{gh} = \phi_g \circ \phi_h = \phi(g) \circ \phi(h)
$$

• We have two cases:

– suppose *g* ∈ *Z*(*G*) (*g* commutes with all elements in *G*) then given *x* ∈ *G*

$$
\phi_g(x) = gxg^{-1} = xgg^{-1} = x
$$

– suppose *g* ∈ *G* with *ϕ^g* = id*G*, then for any *x* ∈ *G*

$$
x = \phi_g(x) = gxg^{-1} \quad \implies \quad gx = xg
$$

since *x* was arbitrary we have $g \in Z(G)$

- For the furthermore allow $a := g^{-1}h$ for ease of reading
	- $-$ if $g^{-1}h \in Z(G)$ then given $x \in G$

$$
\phi_a(x) = aha^{-1} = xaa^{-1} = x \implies \phi_a = id_G
$$

$$
id_G = \phi_a = \phi_{g^{-1}h} = \phi_{g^{-1}} \circ \phi_h \implies \phi^g = \phi_h
$$

 $-$ if $g^{-1}h \notin Z(G)$ then there is some $x \in G$ with

$$
ax \neq xa \implies \phi_a(x) = axa^{-1} \neq xaa^{-1} = x \implies \phi_a \neq id_G
$$

$$
id_G \neq \phi_a = \phi_{g^{-1}h} = \phi_{g^{-1}} \circ \phi_h \implies \phi^g \neq \phi_h
$$

• If $Z(G)$ is non-trival then ϕ is not an isomorphism as it would not be injective

– since every *g* ∈ *Z*(*G*) would correspond to a *ϕ^g* that equals id*^G*

Example: for $G = D_8$, understand the map $\phi_8 \to \text{Inn}(D_8)$, we know that

$$
\text{Inn}(D_8) = \{ \phi_{\text{id}_4}, \ \phi_{R_{90}}, \ \phi_{R_{180}}, \ \phi_{R_{270}}, \ \phi_F, \ \phi_{R_{90} \circ F}, \ \phi_{R_{180} \circ F}, \ \phi_{R_{270} \circ F} \}
$$

However this list could have repeated elements

- We have seen that $Z(D_8) = {\text{id}_4, R_{180} \circ F}$
- Thus for any $g, h \in D_8$ we have

$$
\phi_g = \phi_h \quad \iff \quad g^{-1}h \in \{\text{id}_4, R_{180} \circ F\} \quad \iff \quad h \in g \cdot \{\text{id}_4, R_{180} \circ F\}
$$

• These possible sets of the form $g \cdot {\text{id}_4, R_{180} \circ F}$ are exactly

 $\{id_4, R_{180} \circ F\}, \{R_{90}, R_{270} \circ F\}, \{R_{180}, F\}, \{R_{270}, R_{90}F\}$

• Hence $\phi_g = \phi_h$ iff both of *g* and *h* belong to the same set among these 4 sets and $|Inn(D_8)| = 4$

Kernel

Definition: let *G*, *H* be groups and ψ : *G* \rightarrow *H* be a homomorphism

• The *kernel* of ψ is the set

$$
\ker(\phi) := \{ g \in G : \psi(g) = 1_H \}
$$

• e.g. for $\phi : G \to \text{Inn}(G)$ we know that $\text{ker}(\phi) = Z(G)$

Proposition: let *G, H* be groups and ψ : $G \to H$ be a homomorphism. Then ker(ψ) $\leq G$ is a subgroup **Proof**:

• To see that $\ker(\psi)$ is a semigroup, if $g, h \in \text{Ker}(\psi)$ then

$$
\psi(g \cdot h) = \psi(g) \cdot \psi(h) = 1_H \cdot 1_H = 1_G
$$

hence $q \cdot h \in \text{ker}(\psi)$

• Note that

$$
\psi(1_G) = \psi(1_G \cdot 1_G) = \psi(1_G) \cdot \psi(1_G) \quad \implies \quad 1 = \phi(1_G)
$$

hence $1_G \in \text{Ker}(\phi)$

• Now suppose $g \in \text{ker}(\psi)$ then

$$
\psi(g^{-1} \cdot g) = 1_H = \psi(g^{-1}) \cdot \psi(g) = \psi(g^{-1}) \quad \to \quad 1_H = \phi(g^{-1})
$$

hence $g^{-1} \in \text{Ker}(\phi)$

Normality

Definition: let *G* be a group. A subgroup $K \leq G$ is called *normal* (in *G*) if $\forall g \in G$

$$
gKg^{-1} = K
$$

- If $K \leq G$ is normal we write $K \leq G$.
- Note that $gKg^{-1} := \{gxg^{-1} : x \in K\}$
- Warning: $K \leq H$ and $H \leq G$ do *not* in general imply $K \leq G$

Proposition: let ψ : $G \to H$ be a homomorphism, then ker(ψ) $\leq G$

Proof: Let $x \in \text{ker}(\psi)$ and let $g \in G$ then

$$
\psi(gxg^{-1}) = \psi(g)\psi(x)\psi(g^{-1}) = \psi(g)\psi(g^{-1}) = 1_H
$$

Hence $gxq^{-1} \in \text{ker}(\psi)$ so $\text{ker}(\psi) \trianglelefteq G$

Cosets

Definition: let *G* be a group and $H \leq G$.

- *Left coset* of *H* in *G* is a subset of *G* of the form $gH = \{gh : h \in H\}$ for some $g \in G$
- *Right coset* of *H* in *G* is a subset of *G* of the form $Hg = \{hg : h \in H\}$ for some $g \in G$

Definition: for $H \leq G$ we also have the *set* of left/right cosets

- $G/H := \{gH : g \in G\}$ denotes the set of left cosets of *H* in *G*
- $G/H := \{Hg : g \in G\}$ denotes the set of right cosets of *H* in *G*

Let $H \leq G$ and $g \in G$, the following are some basic facts about cosets:

- $g \in gH$ and $g \in Hg$
- $|gH| = |H| = |Hg|$ (due to there existing a bijection between them)
- $(gH)^{-1} := \{k^{-1} : k \in gH\} = Hg^{-1}$ (left coset becomes right coset, and vice versa)
- $H \trianglelefteq G$ iff $gH = Hg$ for every $g \in G$

Example: $G = \mathbb{Z}$ and $H = 5\mathbb{Z}$

- We use additive notation for this group (which by convention means the group is Abelian)
- There are 5 cosets of *H* in *G* which are $k + 5\mathbb{Z}$ as *k* ranges over members of \mathbb{Z}_5

 $− g = 0$ then $5\mathbb{Z} = \{n \in \mathbb{Z} : n \equiv 0 \text{ mod } 5\}$ **–** *g* = 1 then 1 + 5Z = {*n* ∈ Z : *n* ≡ 1 mod 5} **–** *g* = 2 then 2 + 5Z = {*n* ∈ Z : *n* ≡ 2 mod 5} **–** *g* = 3 then 3 + 5Z = {*n* ∈ Z : *n* ≡ 3 mod 5} **–** *g* = 4 then 4 + 5Z = {*n* ∈ Z : *n* ≡ 4 mod 5}

Lemma: if $g, k \in G$ a group with $H \leq G$ and $k \in gH$ then $kH = gH$ (similarly for right cosets) **Proof**: since as $k \in gH$ we find $h \in H$ with $k = gh$ then

$$
k = gh
$$
 \implies $kH = ghH = g(hH) \subseteq gH$
 $g = kh^{-1}$ \implies $gH = kh^{-1}H = k(h^{-1}H) \subseteq kH$

Then using that $kH \subseteq gH$ and $gH \subseteq kH$ we have $kH = gH$ as expected.

Example: choosing $G = \mathbb{Z}_8$ and subgroup $H = \{0, 4\}$

• The cosets G/H are $\{0,4\}, \{1,5\}, \{2,6\}, \{3,7\}$

Example: choosing $G = D_8$ and subgroup $H = Z(D_8) = {\text{id}_4, R_{180} \circ F}$

• Since $H \trianglelefteq G$ the left and right cosets are = right cosets

$$
\{\mathrm{id}_4, R_{180} \circ F\}, \{R_{90}, R_{270} \circ F\}, \{R_{180}, F\}, \{R_{270}, R_{90} \circ F\}
$$

once we see all the elements of *G* we are basically done

Proposition: suppose *G* a group, $H \leq G$, and $g, k \in G$.

• Then either $gH = kH$ or $gH \cap kH = \emptyset$ (similar for right cosets)

Proof:

• Fix $x \in gH \cap kH$, then there are $h_1, h_1 \in H$ with

$$
x = gh_0 = kh_1
$$

- since
$$
k = gh_0 h_1^{-1}
$$
 we have $kH \subseteq gH$

- $-$ since *g* = *gh*₁ h_0^{-1} we have *gH* ⊆ *kH*
- As a result we get $gH = kH$ whenever $gH \cap kH \neq \emptyset$

Lagrange's Theorem

Definition: let *G* be a group and $H \leq G$. The *index* of *H* in *G* is the number of left cosets of *H* in *G* $|G : H| := |G/H|$

Theorem (*Lagrange's Theorem*): Let *G* be a *finite* group and $H \leq G$. Then |*H*| divides |*G*|

Proof: we will show that the set of left cosets of *H* in *G partition G*, and each coset has size |*H*|

- Let *G* be a finite group with order *n* and $H \leq G$ be a subgroup
	- **–** notice that id*^G* ∈ *H*
	- $−$ if we pick *g* ∈ *G* with *g* ∉ *H* we can construct *gH* with

$$
H \cap gH = \emptyset
$$

since that would require $gh_i = h_j$ for some i, j however

$$
gh_1 = h_j \implies g = h_j h_i^{-1} \in H
$$

which contradicts that $g \notin H$

 $−$ if we pick another $g' \in G$ with $g' \notin H$ and $g' \notin gH$ we can show that

$$
gH \cap g'H = \emptyset
$$

since if there is an overlapping element then $gh_i = g'h_j$ for some *i.j* however

$$
gh_i = g'h_j \implies gh_i h_j^{-1} = g' \implies g' \in gH
$$

which contradicts that $g' \notin gH$ (similar argument for $H \cap g'H = \emptyset$)

• Repeating this we get a non-overlapping set of left cosets

$$
\{H, g_1H, g_2H, \ldots, g_nH\}
$$

notice that this set is just *G/H*

– the definition of *G/H* = {*gH* : *g* ∈ *G*} has repeating elements

- Each of these cosets have the size $|H|$ so by construction we know G/H partitions G into cosets
- Using the index of *H* in *G* as $|G:H| = |G/H|$ we see that

$$
|G| = |H| \cdot |G/H|
$$

as a result $|H|$ divides $|G|$

Corollary: $|G : H| = |G/H| = |G|/|H|$

Corollary: for *G* finite group with $g \in G$ we know $|g| = |\langle g \rangle|$ divides $|G|$ (since $\langle g \rangle \leq G$)

Corollary: groups of prime order are cyclic

Proof: let *G* have prime order then the only subgroups of *G* are itself or $\{1_G\}$

- If $G = \{1_G\}$ then cyclic
- Otherwise picking any $g \neq 1_G$ leads to $\langle g \rangle = G$
	- **–** since |⟨*g*⟩| must divide |*G*| which is prime
	- $-$ while $g \neq 1_G$ so $|\langle g \rangle| \neq 1$ so $|\langle g \rangle| = p$ and *G* is cyclic

Corollary: for any finite group *G* and $g \in G$, $g^{|G|} = 1_G$ **Proof**: order of *g* divides order of *G* so $|G| = q|g|$ for some $q \in \mathbb{N}$ then

$$
g^{|G|} = g^{|g| \cdot q} = (g^{|g|})^q = 1_G^q = 1_G
$$

Corollary (*Fermat's Little Theorem*): for every integer $a \in \mathbb{Z}$ and prime *p*

$$
a^p \equiv a \bmod p
$$

Proof: we may write $a = qp + r$ for some $q \in \mathbb{Z}$ and $r \in \mathbb{Z}_p$

- If $r = 0$ then $a^p \equiv a \equiv 0 \mod p$
- If $r \neq 0$ then $r \in \mathbb{U}_p = \mathbb{Z}_p \setminus \{0\}$ (since when p prime, \mathbb{U}_p has a order of $p-1$) then

$$
a^p \equiv r^p \equiv (r^{p-1})r \equiv 1 \cdot r \equiv r \equiv a \bmod p
$$

since $r^{p-1} = r^{|\mathbb{U}_p|} = 1$

Example: converse of Lagrange's theorem is not true in general

- Consider A_4 and since $|S_4| = 4!$ we have $|A_4| = |S_4|/2 = 12$
- We will show that *A*⁴ has no subgroup of order 6
- The elements of *A*⁴
	- $-$ **id**₄
	- **–** 2 2-cycles:

$$
\frac{\frac{4\cdot3}{2}\cdot\frac{2\cdot1}{2}}{2} = 3
$$

– 3-cycle:

$$
\frac{4\cdot 3\cdot 2}{3} = 8
$$

- If there is a subgroup $H \leq A_4$ with $|H| = 6$ it would need to contain at least 2 3-cycle elements
- Fix $a \in A_4$ with $|a| = 3$ then \dots

Orbit-Stabilizer Theorem

Definition: let *G* be a group and $g \in G$ then

$$
Stab_G(g) := \{ g \in G : g(x) = x \}
$$

Example: for $G = S_6$ and $H = \text{Stab}_G(1)$ what is G/H

- Consider some left coset gH , if $h \in H$ then $gh(1) = g(1)$
- Conversely, suppose $g, k \in G$ satisfy $g(1) = k(1) = \ell$ for some $\ell \leq 6$ then

$$
g^{-1}k(1) = g^{-1}(\ell) = 1 \quad \implies \quad g^{-1}k \in H \quad \implies \quad k \in gH
$$

as a result $hK = gH$

• So left cosets of *H* in *G* are exactly sets of the form

$$
\{g \in S_6 : g(1) = \ell\} \quad \text{for } \ell \in \{1, \ldots, 6\}
$$

Theorem (*Orbit-Stabilizer Theorem*): let *X* be a set, $G \leq \text{Sym}(X)$ then for $x \in X$

$$
|G| = |O_G(x)| \cdot |\text{Stab}_G(x)|
$$

Proof: we know that $|G|/|H| = |G/H|$ so it suffices to find a bijection from G/H to $O_G(x)$

- $g, h \in G$ belongs the same left *H*-coset iff $g(x) = h(x)$
- Thus the map $F: G/H \to O_G(x)$ given by $f(gH) = g(x)$ is well-defined and injective

• *f* is a bijction since if $O_G(x)$ then $\exists g \in G$ with $g(x) = y$ so $f(gH) = g(x) = y$

Theorem: let *G* be a group. let $H, K \leq G$ be finite subgroups, then $|HK| = \{hk : h \in H, k \in K\}$

- Then $|HK| = |H| \cdot |K|/|H \cap K|$
- While HK may not be a group the $H \cap K$ is always a subgroup

Proof: form the cartesian product $H \times K$ (as sets) and the map $\pi : H \times K \to HK$ given by $\pi(h, k) = hk$

- *π* is surjective and we claim that *π* is $|H \cap K|$ -to-1
- Fix some $x = hk \in HK$ for every $t \in H \cap K$ then also $x = (ht)(t^{-1}k)$
- So if we have one way of representing x then we have $|H \cap K|$ other ways
- So $|\pi^{-1}(\{x\})| \geq |H \cap T|$
- Conversely, if $x = h'k'$ for some $h' \in H$ and $k' \in K$ then

$$
x = hk = h'k' \implies (k')^{-1}(k')^{-1}hk = 1_G \implies (h')^{-1}h = h'k^{-1} \in H \cap K
$$

• set $t = h^{-1}(h') = k(k')^{-1}$ then $h' = ht$ and $k' = t^{-1}k$

Theorem: if *G* a group and *H, K* are subgroups of *G* with at least one normal in *G* then

$$
HK \leq G
$$

Proof: suppose wlog that *H* is normal to *G* then $HK = KH$ (which can be used to prove subgroup)

- show that $id_G \in HK$ and that *HK* is closed under composition and inverses
- the fact that $HK = KH$ is used to show closed under inverses

Example: given a group of order $2p$, $p > 2$ prime we have two groups of order $2p$

$$
\mathbb{Z}_{2p} \qquad D_{2p}
$$

Theorem: up to isomorphism, these are the only groups of order 2*p*

Proof: let *G* be a group of order 2*p*

- If $\exists g \in G$ with $|g| = 2p$ then $G \cong \mathbb{Z}_{2p}$
- Otherwise $\forall g \in G$ we have $|g| \neq 2p$
	- $-$ first a bit about D_{2p} generated by a rotation r of order p and a flip of order 2
	- $-$ Then $F \circ r = r^{p-1} \circ F$
- claim: *G* has an element of order *p*
	- **–** In particular ∀*g* ∈ *G g* = *g* [−]¹ hence

$$
gh = (gh)^{-1} = h^{-1}g^{-1} = hg
$$

so *G* is abelian and any $g + h \in G \backslash \{1_G\}$ generate the subgroup

{1*G, g, h, gh*}

and nothing else (since closed under inverses $g = g^{-1}$, closed under product since everything has order 2)

- **–** However this contradicts Lagrange's theorem since 4 ∤ 2*p*
- **–** Thus there is an element of *p*

• Fix $r \in G$ with $|r| = p$ let $F \not\in \langle r \rangle$

- $-$ If *p* then $|\langle r \rangle \cdot \langle F \rangle| = |\langle r \rangle| \cdot |\langle F \rangle| / |\langle r \rangle \cap \langle F \rangle| = p \cdot p/1 = p^2 > 2p$
- **–** as the only proper subgroup of *< F >* is of order *p* or 1 because Lagrange
- $-$ so $|F| = 2$ and now consider $r \cdot F$ as

$$
r \cdot F \notin \langle r \rangle, |rF| = 2
$$

so $(rF)^{-1} = rF$ but also $F^{-1} \circ r^{-1} = F \circ r^{p-1}$

 $−$ so $r \cdot F = F \cdot r^{p-1}$ then if a group has this then it is isomoriphic to the dihedral group

Products

Definition: let *G* and *H* be groups their *direct product* is defined as

$$
G \times H = \{(g, h) : g \in G, h \in H\}
$$

• With two elements from $G \times H$ we have

$$
(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)
$$

• Textbook uses notation $G \oplus H$ but they are the same if working with finitely many groups.

Example: direct products are useful for creating new groups

• Cyclic groups: for positive integers *m, n* then

$$
\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \quad \iff \quad \gcd(m, n) = 1
$$

• Unit groups: given positive integers m, n with $gcd(m, n)$ then

$$
\mathbb{U}_{mn} \cong \mathbb{U}_m \times \mathbb{U}_n
$$

• Permutation groups: if *X*, *Y* disjoint sets, $G \leq \text{Sym}(X)$ and $H \leq \text{Sym}(Y)$ then

 $G \times H$ is isomorphic to a subgroup of $Sym(X \cup Y)$

Direct Products of Cyclic Groups

Warmup: groups of order 6: there are only two $S_3 = D_6$ and \mathbb{Z}_6

$$
\mathbb{Z}_3\times\mathbb{Z}_2\cong\mathbb{Z}_6
$$

(1*,* 1) has order 6:

$$
(1,1), (2,0), (0,1), (1,0), (2,1), (0,0)
$$

Given positive integers m, n can try the same thing for $\mathbb{Z}_n \times \mathbb{Z}_n$: is $(1, 1)$ a generator?

Theorem: $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic iff $gcd(m, n) = 1$ **Proof**: first note that for any k, m, n and any $(a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n$

$$
k \cdot (a, b) = (ka, kb)
$$

so if both $n \mid k$ and $m \mid k$ then (a, b) has order of most k . In particular

$$
|(a,b)| \le \operatorname{lcm}(n,m) = \frac{nm}{\gcd(n,m)}
$$

- so if $gcd(m, n) \neq 1$ then no element of $\mathbb{Z}_m \times \mathbb{Z}_n$ has order mn
- if $gcd(m, n) = 1$ then $(1, 1)$ has order exactly m, n (exercise)

by calegy's theorem every group can be represented as a subgroup of a permutation group

Let *X*, *Y* be disjoint sets $G \leq \text{Sym}(X)$ and $H \leq \text{Sym}(Y)$

Claim: $G \times H$ is isomorphic to a subgroup of $Sym(X \cup Y)$

Proof (*sketch*):

- we just need a injective homomorphim from $G \times H$ to $Sym(X \cup Y)$
- we can just take for $(a, b) \in G \times H$ that since they are disjoint they just do their own thing (since they are disjoint) as an element of $\text{Sym}(X \cup Y)$

Unit groups: given positive integers m, n with $gcd(m, n) = 1$ we have

$$
\mathbb{U}_{mn} \cong \mathbb{U}_m \times \mathbb{U}_n
$$

idea:

$$
\psi: \mathbb{U}_{mn} \to \mathbb{U}_m \times \mathbb{U}_n
$$

via $\phi(x) = (x \mod m, x \mod n)$ (exercise, or just check the book)

Gauss's Theorem

Theorem (*Gauss*):

- $\mathbb{U}_2 \cong \mathbb{Z}_1$
- $\mathbb{U}_{2^n} \cong \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_2$ for $n \geq 2$
- $\mathbb{U}_{p^n} \cong \mathbb{Z}_{p^n-p^{n-1}}$ for odd *p* prime and $n \geq 1$

Isomorphism of Products

Given group *G* and subgroups $H, K \leq G$ when do we have $G \cong H \times K$?

Necessary conditions:

- \bullet $G = HK$
- $H \cap K = \{1_G\}$ (we cannot have repeats in $H \times K$???)
- elements of *H* commute with elements of *K*

$$
(h,1_K) \cdot (1_H,k) = (h,k) = (1_H,k) \cdot (h,1_K)
$$

• In particular, both *H, K* are normal subgroups of *G*

$$
(h,k)(H \times \{1_K\})(h^{-1},k^{-1}) = hHh^{-1} \times \{kk^{-1}\} = H \times \{1_K\}
$$

same for the reverse

these are actually also the sufficient conditions

Theorem: let *G* be a group and *H, K* \trianglelefteq *G* are normal subgroups of *G* s.t. *G* = *HK* and $H \cup K = \{1_G\}$ then $G \cong H \times K$

Factor Maps

Recall that $\psi : G \to H$ is a homomorhpism (map that repects group ops), then

$$
\ker(\psi) := \{ g \in G : \psi(g) = 1_H \} \trianglelefteq G
$$

it turns out that every normal subgroup is the kernel of some homomorphism.

Lemma: *G* a group and $K \leq G$ then for any $g, h \in G$,

$$
gKhK = ghK
$$

Proof: $g(Kh)K = g(hK)K = ghK$ since K is normal so left and right cosets are the same

Definition: *G* a group and $K \trianglelefteq G$ define a binary op on G/K via for $g, h \in G$

$$
(gK) \cdot (hK) = ghK
$$

Example: $G = \mathbb{Z}, K = 5\mathbb{Z}$, then

$$
G/K = \{n + 5\mathbb{Z} : n \in \mathbb{Z}_5\}
$$

given $a, b \in \mathbb{Z}$ then

$$
(a + 5\mathbb{Z}) + (b + 5\mathbb{Z}) = (a + b) + 5\mathbb{Z}
$$

= $(a + b \mod 5) + 5\mathbb{Z}$

Theorem: the binary operation from the previous definition is a group operation

Proof: we first mention that since multiplication on *G* is associative, also the binary operation on *G/K* is associative (exercise) so we at least have a semigroup

• if $gK \in G/K$ then

 $K \cdot qK = qK \cdot K = qK$

so $K = 1_{G/K}$ is a 2-sided id

• also $(gK)(g^{-1}K) = (g^{-1}K)(gK) = K$ so gK has 2-sided inverse

Theorem: *G* a group and $K \leq G$ then the map $\pi_K : G \to G/K$ given by

$$
\pi_K(g) = gK
$$

is a surjective hom with kernel *K*

Proof: given $g, h \in G$

$$
\pi_K(gh) = ghK = gK \cdot hK
$$

$$
= \pi_K(g)\pi_K(h)
$$

- if $k \in K$ then $\pi_K(k) = kK = K$
- if $g \notin K$ then $\pi_K(g) = gK \neq K$ so

$$
\ker(\pi_K) = K
$$

Let *G*, *H* be groups and ψ : *G* \rightarrow *h* be a homomorphism

Fact: Im(ψ) \leq *H* a subgroup (exercise)

$$
\operatorname{Im}(\psi) = \{\psi(g) : g \in G\}
$$

Let $K = \text{ker}(\psi)$, last time we produced a specific group G/K and homomorphism $\pi_K : G \to G/K$ with kernel *K*

First Isomorphism Theorem

Theorem (*First Isomorphism Theorem*): let ψ : $G \rightarrow H$ be a homomorphism then

$$
G/\mathrm{Ker}(\psi) \cong H
$$

Proof: assume ψ is surjective, i.e. $H = \text{Im}(\psi)$ and let $K = \text{Ker}(\psi)$

• Let σ : $G/Ker(\psi) \to H$ be defined by

$$
\sigma(gK)=\psi(g)
$$

– to check that *σ* is well defined suppose *k* ∈ *K* then for *g* ∈ *G*

$$
\sigma(gkK) = \psi(gk) = \psi(g) \cdot \psi(k) = \psi(g) \cdot 1_H = \psi(g)
$$

• Check σ is a bijection, as ψ is a surjection, so is σ

suppose $g_0, g_1 \in G$ are such that

$$
\sigma(g_0 K) = \sigma(g_1 K) \iff \psi(g_0) = \psi(g_1) \iff \psi(g_0^{-1} g_1) = 1_H
$$

i.e. $g_0^{-1}g_1 \in K$, this happens iff $g_0K = g_1K$ so σ injective

• *σ* respects group ops: let $g_0K, g_1K \in G/K$ then

$$
\sigma(g_0K \cdot g_1K) = \sigma(g_0g_1K) = \psi(g_0g_1) = \psi(g_0 \cdot \psi(g_1) = \sigma(g_0K) \cdot \sigma(g_1K)
$$

Example: let $\psi : \mathbb{Z} \to \mathbb{Z}_n$ be the homomorphism given by $\psi(m) = m \mod n$. ψ is surjective

$$
\ker(\psi) = n\mathbb{Z}
$$

so $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ (so they are the same up to isomorphism)

Example: let $\psi : S_n \to \mathbb{Z}_2$ be given by

$$
\psi(g) = \begin{cases} 0 & \text{if } g \in A_n \\ 1 & \text{if } g \notin A_n \end{cases}
$$

 ψ is a homomorphism (exercise) and $\text{Ker}(\psi) = A_n$ so $S_n/A_n \cong \mathbb{Z}_2$

Example: consider D_8 , let $K \leq D_8$ be the subgroup of rotations.

$$
|D_8/K| = 2 \quad \text{so} \quad D_8/K = \mathbb{Z}_2
$$

we are basically just forgetting all the rotations so the only thing we remember is if we flip the square or not

Recall given groups $K \leq G$ that the index of *K* in *G* is

$$
|G:K| := |G/K|
$$

Prop: let *G* be a group and $K \leq G$ on index 2 subgroup, then $K \leq G$

Proof: fix $q \in G$

- if $q \in K$ then $qK = Kq$
- if $g \notin K$ then $gK = \{g \in G : g \notin K\}$ and also $Kg = \{g \in G : g \notin K\}$ so $gK = Kg$

Definition: let $H \leq G$, the *normalizer* of *H* in *G* is the set $\{g \in G : gHg^{-1} = H\} = N_G(H)$ exercise: $N_G(H) \leq G$ and $H \leq N_G(H)$

Prop:

$$
C_G(H) = \{ g \in G : \forall h \in H \text{ } ghg^{-1} = h \} \trianglelefteq N_G(H)
$$

furthermore

$$
N_G(H)/C_G(H) \cong
$$
 a subgroup of $Aut(H)$

Remark: this is just a *subgroup veroisn* of the result

$$
G/Z(G) \cong \text{Im}(G) \trianglelefteq \text{Aut}(G)
$$

Proof: define $\psi : N_G(H) \to \text{Aut}(H)$ to be given by $\psi(g) = \phi_g$ where we recall that $\psi_g(h) = ghg^{-1}$

- this a homomorphism (easy to show)
- the kernel of ψ is $C_G(H)$ (exercise)
- then by First Iso Theorem (FIT) we are done

Last week: (first isomorphim theorem) if ψ : $G \to H$ is a surjective homomorphism and $K = \text{ker}(\psi)$ then *H* ≅ *G*/*K*

Normalizer

Definition: the *normalizer* of $H \leq G$ is the set

$$
N_G(H) := \{ g \in G : gHg^{-1} = H \}
$$

Lemma: $N_G(H) \leq G$ and that $C_G(H) \leq N_G(H)$

Proof: TODO

Theorem (*Normalizer-Centralizer Theorem*): if $H \leq G$ then

- There exists a homomorphism $\psi : N_G(H) \to \text{Aut}(H)$ with $\text{ker}(\psi) = C_G(H)$
- So we get $C_G(H) \trianglelefteq N_G(H)$ and

 N ^{*G*}(*H*)*/C*^{*G*}(*H*) ≅ some subgroup of Aut(*H*)

Proof: recall that $C_G(H) := \{ g \in G : \forall h \in H, ghg^{-1} = h \}$ TODO

Example: every group of order $35 = 5 \times 7$ is cyclic

Proof: assume *G* is not cyclic (no element of order 35) towards a contradiction

- Begin by noting that every non-id group element has order 5 or 7 (by Lagrange)
- The number of elements $g \in G$ with order 5 is a multiple of $\phi(5) = 4$

– Since 4 ∤ 34 we cannot have element of order 5

- Similarly $\phi(7) = 6$ is not a multiple of 34 so we cannot have every element of order 7
- Thus *G* has non-identity elements of both possible orders
- Let $H \leq G$ have order 7 (subgroup generated by taking an element of order 7)
	- $−$ If $K ≤ G$ is a different subgroup of order 7 then we have

$$
|HK| = |H| \cdot |K|/|H \cap K| = 49
$$

as a result *H* is the *unique* subgroup of order 7

– We have *H* ⊴ *G*, i.e. *NG*(*H*) = *G*, since *H* is cyclic and also

$$
H \leq C_G(H) \leq G
$$

since $|C_G(H)|$ divides 35 we have $C_G(H) = H$ or *G*

- ∗ we know that *H* is the only subgroup of order 7 and gHg^{-1} is of order 7 so $gHg^{-1} = H$
- if $C_G(H) = G$ (every group element communates with elements of *H*) then take any non-id $h \in H$ and any $k \in G$ of order 5 (which must exist) and since h and k commute $|hk| = 35$ (wtf is this theorem, why do we need commute), which contradictions assumption that *G* is not cyclic
- otherwise if $C_G(H) = H$ then $N_G(H)/C_G(H)$ (normalizer mod centeralizer) has order 5 but by the normalizer-cenetralizer theorem (NC theorem) this is isomorphic to a subgroup of Aut(*H*) and $Aut(H) \cong \mathbb{U}_7$ which is a group of size 6
	- **–** so somehow we have found that a group of order 5 is isomorphic to a subgroup of a group(???) with an order of 6, so contradiciton!

Finite Abelian Groups

Theorem (*Fundamental Theorem of Finite Abelian Groups*): let *G* be an Abelian group with

$$
|G| = p_1^{n_1} \cdots p_k^{n_k}
$$

where p_i 's are prime and n_i are positive integers then

- $G \cong G_1 \oplus \cdots \oplus G_k$ where each G_i is cyclic and $|G_i| = p_i^{n_i}$
- The direct sum is unique up to rearranging and each G_i is unique up to isomorphism

Theorem (IDK): a finite Abelian group is isomorphic to a direct product of cyclic groups of prime-power order, where this decomposition is unique up to the order in which the factors are written

Proof: split up this to be proved into two parts *later*

Example: all Abelian groups of order 16 up to isomorphism

 \mathbb{Z}_{16} $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4$ $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$

The Fundamental theorem of Finite Abelian Groups is actually saying every finite Abelian group *G* is isomorphic to a direct product of cyclic groups of the form

$$
\mathbb{Z}_{p_1^{\alpha_1}} \times \cdots \times \mathbb{Z}_{p_n^{\alpha_n}}
$$

where p_i 's are primes but are not necessarily distinct (is each $G_i \cong \mathbb{Z}_p$???)

Corollary: if *G* is a finite Abelian group of order *n* and $d | n$ then $\exists H \leq G$ with $|H| = d$

- The converse of Lagrange's theorem holds
- Easy to show from the Fundamental Theorem (Corollary 8 in notes)
- Also recall that any subgroup of a cyclic group is also cyclic

distinctness of the stuff in example: let p be a prime and let n_1, \ldots, n_k, m be positive integers, then how many elements of order p^m are there in $\mathbb{Z}_{p^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{n_k}}$? (where $n_1 \leq n_2 \leq \cdots n_k$)

- If $m > n_k$ then none (as we are looking at the lcm of the orders of the stuff)
- let $p \in \mathbb{Z}_{p^{n_k}}$ has order p^{n_k} , then so does $(0,0,\ldots,g) = \bar{g}$ let $H\langle \bar{g} \rangle$
	- $-$ then $G/H \cong \mathbb{Z}_{p^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{n_{k-1}}}$
	- **–** inductively suppose we know the number of elements of every possible order in *G/H*

Example $G = \mathbb{Z}_8 \oplus \mathbb{Z}_9$, $H = \{0\} \oplus \mathbb{Z}_8$ then G/H has 4 elements of order 8, 1 of order 2, or 2 elements of order 4, 1 of order 1(???)

so taking these and adding another coordinate with an element of \mathbb{Z}_8

- order 8: 48
- order 4: 12
- order 2: 3
- order 1: 1

Monday: Finite Abelian groups

Theorem: let *G* be a finite Abelian group then *G* is isomorphic to a direct-product of cyclic groups each with prime power order. Furthermore, this decomposition is unique.

to start, focus on the case where $|G| = p^N$ for some prime *p* and $N \ge 1$

If G_1, \ldots, G_n have orders p^{m_1}, \ldots, p^{m_n} resp. how mnay elements of each possible order are there?

Example:

- consider \mathbb{Z}_{25} the possible orders are $1, 5, 25$
	- **–** 1 elements of order 1
	- **–** 4 elements of order 5 (???)
	- **–** 20 elements of order 25 (???)
- equvalently we can say that we have
	- **–** 1 elements of order at most 1
	- **–** 5 elements of order at most 5
	- **–** 25 elements of order at most 25
- more generally, in \mathbb{Z}_{p^N} given $1 \leq k \leq N$ there are exactly p^k -many elements of order *at most* p^k , namely the mutliples of $p^{N-k} \in \mathbb{Z}_{p^N}$

Proposition: fix a prime *p* and integers $m_1 \geq \cdots m_n \geq 1$ for the group

$$
G=\mathbb{Z}_{p^{m_1}}\times\cdots\times\mathbb{Z}_{p^{m_n}}
$$

given $k \geq 1$

- let $j \leq n$ be the largest with $m_j \geq k$ (if *j* exists or $j = 0$ when *j* does not exist).
- Then *G* has exactly $(p^{jk} \cdot p^{m_{j+1}} \cdots p^{m_n})$ -many elements of order at most p^k

Proof: recall that given groups G_1, \ldots, G_n and $g_i \in G$ for $i \leq n$ the order of $(g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$ is just the lcm of order of $g_i \in G$.

• if $G_i = \mathbb{Z}_{p^{m_i}}$ then (g_1, \ldots, g_n) has order $\leq p^k$ iff each g_i the formula now follows

Proposotion: fix *p* a prime and integers $m_1 \geq \cdots \geq m_n \geq 1$ and $a_1 \geq \cdots \geq a_\ell \geq 1$ write

$$
G=\mathbb{Z}_{p^{m_1}}\times\cdots\times\mathbb{Z}_{p^{m_n}}\qquad H=\mathbb{Z}_{p^{a_1}}\times\cdots\times\mathbb{Z}_{p^{a_\ell}}
$$

 $\text{then } G \cong H \text{ iff } (m_1, \ldots, m_n) = (a_1, \ldots, a_\ell)$

Proof: obvious when equal, assume $(m_1, \ldots, m_n) \neq (a_1, \ldots, a_\ell)$

- if $|G| \neq |H|$ they cannot be isomorphic
- so let us assume $m_1 + \cdots + m_n = a_1 + \cdots + a_\ell$. let $j \ge 1$ be least with $m_j \ne a_n$ (note that $j \leq \min\{n,\ell\}$ and assume $m_j < a_j$ WLOG
- now consider in *G* and in *H* the number of elements of order at most p^{m_j}
	- $-$ In *G*, this number is exactly $p^{j \cdot m_j} \cdot p^{m_{j+1}} \cdots p^{m_n}$
	- $-$ In *H*, this number is at most $p^{j \cdot m_j} \cdot p^{a_{j+1}} \cdots p^{a_\ell}$
- since $m_{j+1} + \cdots + m_n > a_{j+1} + \cdots + a_\ell$ (since $m_j < a_j$) we conclude that $G \not\cong H$

now work towards existance part of main thm, i.e. *G* can be written as a production of cyclic groups.

Lemma: say *G* Abelian of order p^n with *p* prime and $n \geq 1$. If $a \in G$ has max possible order, then $G \cong \langle a \rangle \times K$ for some $K \leq G$ (where *K* could be written as a cyclic group)

Proof:

- if $n = 1$, then *G* is cyclic and we are done $G \cong G \times \{1\}$ (iso to itself direct product the trival subgroup) (since every group of prime order is cyclic)
- Now assume the propositio nis true for groups of order p^k for $k < n$. fix $a \in G$ of max possible order, say $|a| = p^m$ for some $m \leq n$. Might as well take $m < n$.
- Now choose a $b \notin \langle a \rangle$ (note that *b* cannot be identity) of least possible order
- claim: $\langle a \rangle \cap \langle b \rangle = \{1_G\}$
	- $-$ as $|b^p| = |b|/p$ we have $b^p \in \langle a \rangle$
	- $-\text{ say } b^p = a^i \text{ now } 1_G = b^{p^m} = (a^i)^{p^{m-1}} \text{ so } |a^i| \leq p^{m-1}$
	- $-$ so $i = p_j$ for some integer *j*
	- *−* let $c = a^{-j}b$, we have $c \notin \langle a \rangle$ since $b \notin \langle a \rangle$
- so $c^p = a^{-jp}b^p = a^{-i}b^p = 1_G$ so $|c| = p$ hence $|b| = p$ and $\langle a \rangle \cap \langle b \rangle = \{1_G\}$
	- **–** if there is a non-trival intersection then *b* must entirely intersect *a* due to the choice of *b* (???)
- Now form $\overline{G} = G/\langle b \rangle$, given $x \in G$ write \overline{x} for $x \langle b \rangle$
- note that $|\bar{a}| = p^m$ since if $\bar{a}^{p^{m-1}} = 1_G$, i.e. $a^{p^{m-1}} \in \langle b \rangle$, i.e. $a^{p^{m-1}} = 1_G$, contradiction (we assume that $|a| = p^m$)
- so \bar{a} as max possible order in G
- by induction $\bar{G} \cong \langle \bar{a} \rangle \times \bar{k}$, we set

$$
K = \{ a \in G : \bar{x} \in \bar{K} \}
$$

where $\bar{x} = x \langle b \rangle$ (we claim this works but still need to check)

exercise: we claim $G = \langle a \rangle \cdot K$ and $\langle a \rangle \cap K = \{1_G\}$

Theorem (*Abelian case of Cauchy's theorem*): if *G* is a finite Abelian group and $p \mid |G|$ then *G* contains an element of order *p*

Proof: induction on |*G*|

• base case: for groups of size 1 there is nothing to show

- inductive hypo: let $|G| = n > 1$ and asssume this result holds for all finite Abelian group of order *< n*
- inductive step: fix $g \in G$, $g \neq 1$ *G* we may assume that $p \nmid |g|$ (otherwise we are done?)
	- **–** write *H* = ⟨*g*⟩ (noting that *p* ∤ |*H*|) then *G/H* is a smaller finite Abelian group with *p* | |*G/H*|
	- $-$ by induction, we may find $aH ∈ G/H$ with order *p* in G/H then $p > 1$ is least with $a^p ∈ H$
	- $-$ in particular $|a|$ in *G* is a multiple of *p*
		- ∗ suppose $a^{mp+r} = 1_G$ then $1_G \in a^r H \implies a^r \in H$ but *r* is too small (need to be at least *p*) so contradiction and must be multiple

Theorem (*Fundamental Theorem of Finite Abelian Groups*): if *G* is a finite Abelian group and

$$
|G|=p_1^{n_1}\cdots p_k^{n_k}
$$

with every p_i prime and $n_i \geq 1$ then

- 1. $G \cong G_1 \times \cdots \times G_k$ where all $|G_i| = p_i^{n_1}$ with all G_i are cyclic
- 2. This decomposition of *G* into cyclic groups of prime-power order is unique

Proof:

- **Lemma**: *G* a finite Abelian group of order $p^n \cdot m$ where *p* is prime, $n \geq 1$, and $p \nmid m$
	- *m* = ${g \in G : g^{p^n} = 1_G}$ (*g*'s order is a divides *p*^{*n*}???) and $K = {g \in G : g^m = 1_G}$ then

$$
G \cong H \times K \quad \text{and} \quad |H| = p^n
$$

- **Proof**: as *G* is Abelian, $H, K \leq G$. we need to check $H \cap K = \{1_G\}$ and $G = HK$
	- $-$ if *a* ∈ *H* ∩ *K* then |*a*| divides *p*^{*n*} and |*a*| divides *m*, since *p*^{*n*} and *m* are relatively prime hence $|a| = 1$ so $a = 1_G$
	- $−$ fix *a* ∈ *G* as gcd $(m, p^n) = 1$ by Bezoit's theorem we can find integers *s*, *t* with

$$
sm+tp^n=1
$$

then $a = a^{sm} \cdot a^{tp^n}$ and we note that $(a^{sm})^{p^n} = 1_G$ and simularly $(a^{tp^n})^m = 1_G$ hence $a^{sm} \in H$ and $a^{tp^n} \in K$ so $a \in HK$ and $G \cong H \times K$

- to see that $|H| = p^n$ we have $|G| = |H| \cdot |K|/|H \cap K| = |H| \cdot |K|$
	- **–** towards a contradiction, suppose *p* | |*K*| and by Abelian Cauchy theorem there exists *g* ∈ *K* of order *p*, by definition of *K* this is not possible

Cor (converse to Lagrange's theorem for finite Abelian groups): if *G* is a finite Abelain group and *m* is a positive integer with $m \mid |G|$ then \exists a subgroup $H \leq G$ with $|H| = m$

Proof (sketch): by the theroem if enough to show that this corollary holds for finite cyclic groups

• e.g. $G = \mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}_9$ how to create $H \leq G$ of order 6?

$$
H = \mathbb{Z}_2 \times \{0\} \times 3\mathbb{Z}_3
$$

$$
H = \{0\} \times 4\mathbb{Z}_2 \times 3\mathbb{Z}_3
$$

there will be some counting problems of this type

Group Actions

Groups were invented to capture how they *act* on other mathematical objects such as sets, vector spaces, topological spaces, combinatorial objects, etc.

Definition: let *G* a group and *X* a set, an *group action* of *G* on *X* is a map α : $G \times X \rightarrow X$ satisfying:

- 1. $\forall x \in X$, $\alpha(1_G, x) = x$
- 2. $\forall x \in X$ and $\forall q, h \in G$, $\alpha(qh, x) = \alpha(q, \alpha(h, x))$

Notation: often if the action α : $G \times X \rightarrow X$ is understood by context we just omit it:

- 1. $\forall x \in X, \ 1_G \cdot x = x$
- 2. $\forall x \in X$ and $\forall q, h \in G$, $(qh)x = q(hx)$

Examples:

1. *G* acts on $X = G$ by left multiplication:

$$
\alpha(g, h) = gh
$$

2. *G* acts on $X = G$ by right multiplication:

$$
\alpha(g, h) = hg^{-1}
$$

this is α : $G \times G/H \to G/H$

3. if *X* is a set and $G \le \text{Sym}(X)$ then *G* acts on *X* by *application*

$$
\alpha(g, x) = g(x)
$$

this leads to manyy natural examples of actions (we claim that all actions are just this in disjuise)

• if *V* a vector space and

$$
G = \mathrm{Aut}(V) = GL(V)
$$

GL is the general linear group (the set of all groups that perserve *V* ???)

• if (X, d) is a metric space and $G = \text{Iso}(X)$

exercise: verify the above

• *G* acts on $X = G$ by conjugation

$$
\alpha(g, h) = ghg^{-1}
$$

• if $H \leq G$, *G* acts on $X = G/H$ by left mult

$$
\alpha(g_0, g_1 H) = g_0 g_1 H
$$

Proposition: let *G* be a group and *X* a set. There is a 1-1 correspondence between

- Actions of *G* on *X*
- Homomorphisms from G to $Sym(X)$

Proof: produce a bijective mapping between actions and hom to prove 1-1 correspondence

- let α : $G \times X \to X$ be an action. We define $\bar{\alpha}: G \to \text{Sym}(X)$ via $\bar{\alpha}(g)(x) = \alpha(g, x)$
- now to check that $\bar{\alpha}$ *looks like* a hom

$$
(\bar{\alpha}(g) \circ \bar{\alpha}(h))(x) = \bar{\alpha}(g)(\bar{\alpha}(h)(x))
$$

\n
$$
= \bar{\alpha}(g)(\alpha(h,x))
$$

\n
$$
= \alpha(g, \alpha(h,x))
$$

\n
$$
= \alpha(gh,x)
$$

\n
$$
= \bar{\alpha}(gh,x)
$$
 (Prop 2 of actions)
\n
$$
= \bar{\alpha}(gh,x)
$$

• now check that $\bar{\alpha}(g) \in \text{Sym}(X)$. we note that

$$
\begin{aligned}\n\bar{\alpha}(g) \circ \bar{\alpha}(g^{-1}) &= \bar{\alpha}(g^{-1}) \circ \bar{\alpha}(g) \\
&= \bar{\alpha}(1_G) \\
&= \mathrm{id}_X\n\end{aligned} \tag{Prop 1 of actions}
$$

• Now suppose $\beta: G \to \text{Sym}(X)$ is a hom. We define $\hat{\beta}: G \times X \to X$ via

$$
\hat{\beta}(g,x) = \beta(g)(x)
$$

• check that $\hat{\beta}$ is an action

– if *x* ∈ *X* then

$$
\hat{\beta}(1_G, x) = \beta(1_G)(x) = \mathrm{id}_X(x) = x
$$

– Given *g, h* ∈ *G, x* ∈ *X*

$$
\hat{\beta}(gh, x) = \beta(gh)(x)
$$

= $(\beta(g) \cdot \beta(h))(x)$
= $\beta(g)(\beta(h)(x))$
= $\hat{\beta}(g, \hat{\beta}(h, x))$

exercise: check $\hat{\overline{\alpha}} = \alpha$ and $\overline{\hat{\beta}} = \beta$

now we can re-use the terminology about subgroups of $\text{Sym}(X)$ when discussing actions, i.e.

• if α : $G \times X \to X$ is an action and $x \in X$ then the α -orbit of x is

$$
\{\alpha(g, x) : g \in G\}
$$

• and the α -stabilizer of $x \in \mathcal{X}$ is

$$
\{g \in G : \alpha(g, x) = x\} = \text{Stab}_{\alpha}(x)
$$

if α is understood we can omit the subscripts

Example:

- let $G = D_8 \leq S_4$ (symmetrices of a square) (note that S_4 is permutations of 4 points) $-$ let $C = \{r, b\}$ and $X =$ functions from $\{1, 2, 3, 4\}$ to C
	- **–** i.e. coloring a square's vertices with red and blue
	- **–** given *x* ∈ *X* and *g* ∈ *D*⁸ set

$$
(g \cdot x)(i) = x(g^{-1}(i))
$$

if $q = R_{90}$ then

$$
(g \cdot x)(1) = x(g^{-1}(x)) = x(4) = b
$$

$$
(g \cdot x)(2) = x(g^{-1}(2)) = x(1) = r
$$

see jul 19 10:11 am for better view of example

- **–** how many orbits? jul 19 10:15 am
	- ∗ drop down to 6 equivalence classes

forming new actions from old ones

- set of colorings:
	- $-$ If α : $G \times X \rightarrow X$ is an action and *C* is a set of colors
	- $-$ We obtain a new action of *G* on *C*^{*X*} (set of *C* colorings of *X*) via $(g \cdot f)(x) = f(g^{-1} \cdot x)$
	- **–** picture jul 21 9:38pm
- let $G = S_n$, fix some $1 \leq k \leq n$
	- $-$ then $X = [n]^k = k$ -element subsets of $\{1, \ldots, n\}$
	- $-G$ acts on *X* in the obvious way, i.e. $g \cdot x = g[x]$
		- ∗ notice that rather than sending a single element we send a set of points???
	- **–** for every *k* there is only one orbit
	- **–** we can use the orbit-stabilizer theorem: if *α* : *G* × *X* → *X* is an actoin then ∀*x* ∈ *X*

$$
|G| = |O_{\alpha}(x)| \cdot |\text{Stab}_{\alpha}(x)|
$$

- ∗ when *G* = *Sⁿ* then *X* = [*n*] *^k* and |*G*| = *n*!
- ∗ given *x* ∈ [*n*] *k* then |Stab*α*(*x*)| = *k*!(*n* − *k*)! (ways to permute our subset *x* without mixing points in *x* with those outside *x*)
- * so we get $|O_\alpha(x)| = n!/(k!(n-k)!) = {n \choose k} = |X|$

Polya-Burnside

Definition: if *G* a group, *X* a set, and $\alpha G \times X \to X$ an action then given $g \in G$

$$
fix_{\alpha}(g) = \{x \in X : gx = x\}
$$

Theorem (*Polya-Burnside*): let *G* a finite group, *X* a set, and α : $G \times X \rightarrow X$ a action then

$$
|\mathcal{O}_\alpha| = \frac{1}{|G|} \sum_{g \in G} |\text{fix}_\alpha(g)|
$$

where \mathcal{O}_{α} is set of orbits

Proof: consider the set

$$
Y = \{(g, x) : g \in G, x \in fix_{\alpha}(g)\}\
$$

We will count *Y* in two different ways

• Method 1: consider $g \in G$, we obtain

$$
|Y|=\sum_{g\in G}|\mathrm{fix}_{\alpha}(g)|
$$

• Method 2: consider $x \in X$ (this means that $g \in \text{Stab}_{\alpha}(x)$)

$$
|Y| = \sum_{x \in X} |\text{Stab}_{\alpha}(x)|
$$

=
$$
\sum_{A \in \mathcal{O}_{\alpha}} \left(\sum_{x \in A} |\text{Stab}_{\alpha}(x)| \right)
$$

• For any $A \in \mathcal{O}_{\alpha}$ we recall that if $x, y \in A$ then

$$
|\text{Stab}_{\alpha}(x)| = |\text{Stab}_{\alpha}(y)|
$$

• So by the Orbit-Stablizer theorem for any $x \in A$

$$
\sum_{x \in A} |\text{Stab}_{\alpha}(x)| = |A| \cdot |\text{Stab}_{\alpha}(x)| = |G|
$$

• So now

$$
|Y| = |\mathcal{O}_{\alpha}| \cdot |G|
$$

hence

$$
|\mathcal{O}_\alpha| = \frac{1}{|G|} \sum_{g \in G} |\text{fix}_\alpha(g)|
$$

Example: $\{R, B, G\}$ -colorings of $\{1, 2, 3, 4\}$ under D_8

- $X =$ colorings then $|X| = 81$
- $|\text{fix}_{\alpha}(\text{id}_4)| = 81$
- $|\text{fix}_{\alpha}(R_{90})| = |\text{fix}_{\alpha}(R_{270})| = 3$

– as soon as we color two vertices differently we they get swapped by the rotation

• $|fix_{\alpha}(R_{180})|=9$

•
$$
|\operatorname{fix}_{\alpha}(F)| = 9
$$

• $|fix_{\alpha}(R_{90} \circ F)| = 27$

- $|\text{fix}_{\alpha}(R_{180} \circ F)| = 9$
- $|\text{fix}_{\alpha}(R_{270} \circ F)| = 27$
- then summing all the fix and dividing by size of group we get

$$
168/8 = 21 \text{ orbits}
$$

Last time: Polya Burnshide theorem: if *G* is a finite group and α : $G \times X \to X$ is an action, then

$$
|\mathcal{O}_\alpha| = \frac{1}{|G|} \sum_{g \in G} |\text{fix}_\alpha(g)|
$$

Example:

- Given a circular tray with 6 holds and 2 colors of beads to place in the holes, how many different configs up to rotation of the tray
	- **–** up to rotation: if we make a config then all the rotations of that config are considered the same config
	- our graph here provides the rotations: \mathbb{Z}_6
	- \mathbb{Z}_6 acts on itslf by left addition $\leadsto \mathbb{Z}_6$ acts on $\{R, B\}^{\mathbb{Z}_6}$ (assign each point of \mathbb{Z}_6 a *R* or *B*) where given $m, n \in \mathbb{Z}_6$ and $\chi \in \{R, B\}^{\mathbb{Z}_6}$ then

$$
(m \cdot \chi)(n) = \chi(-m+n)
$$

(the action is written multiplicalitively and remember when converting to group element we get the inverse)

- **–** Apply PB: count fix*α*(*m*) for each *m* ∈ Z⁶
	- * how big is $\{R, B\}^{\mathbb{Z}_6}$? it is $2^6 = 64$ so

$$
|\text{fix}_{\alpha}(0)| = 64
$$

∗ then if we apply the action 1 how many configurations don't change? only all *R* or all *B*

$$
|\operatorname{fix}_{\alpha}(1)|=2
$$

∗ for rotations by 2 clicks we look at the cycles that are created (we see it creates 2 3-cycles)

$$
|\operatorname{fix}_{\alpha}(2)|=4
$$

∗ for rotations by 3 clicks we get 3 2-cycles so

$$
|\operatorname{fix}_{\alpha}(3)|=8
$$

∗ · · ·

 $|fix_{\alpha}(4)|=4$ $|fix_{\alpha}(5)|=2$ now by PB we have

$$
|\mathcal{O}_{\alpha}| = \frac{1}{6} \sum_{m < 6} |\text{fix}_{\alpha}(m)| = \frac{1}{6}(84) = 14
$$

there are 14 different configurations up to rotation

- now suppose we are nable to precisely detect color and only know that two holes have different colored beads: e.g. 5 blue 1 red is the same as 5 red 1 blue
	- **–** jul 24 9:56 am
	- identify the ste of colors with $S_2 = \mathbb{Z}_2$ then

$$
\mathbb{Z}_2\times\mathbb{Z}_6
$$
 acts on $(\mathbb{Z}_2)^{\mathbb{Z}_6}$

where given $i \in \mathbb{Z}_2$ and $m, n \in \mathbb{Z}_6$ with $\chi \in (\mathbb{Z}_2)^{\mathbb{Z}_2}$ we set

$$
((i, m) \cdot \chi)(n) = i + \chi(-m + n)
$$

– we will also count this action as *α* and now begin to count

 $*$ when $i = 0$ we don't swap the colors so

$$
|\text{fix}_{\alpha}(0,0)| = 64
$$

$$
|\text{fix}_{\alpha}(0,1)| = 2
$$

$$
|\text{fix}_{\alpha}(0,2)| = 4
$$

$$
|\text{fix}_{\alpha}(0,3)| = 8
$$

$$
|\text{fix}_{\alpha}(0,4)| = 4
$$

$$
|\text{fix}_{\alpha}(0,5)| = 2
$$

∗ when we swap colors how many will get back to where we started

$$
|\operatorname{fix}_{\alpha}(1,0)|=0
$$

(alternating something)

$$
|\text{fix}_{\alpha}(1,1)| = 2
$$

$$
|\text{fix}_{\alpha}(1,2)| = 0
$$

(need oppaciate holes to have oppaciate color)

$$
|\text{fix}_{\alpha}(1,3)|=8
$$

$$
|\text{fix}_{\alpha}(1,4)|=0
$$

(symmatry from $(1,1)$???)

$$
|\operatorname{fix}_{\alpha}(1,5)|=2
$$

where does the symmatry some from??

– as a reuslt by PB we get

$$
|\mathcal{O}_{\alpha}| = \frac{1}{12} \sum_{(i,j) \in \mathbb{Z}_2 \times \mathbb{Z}_6} |\text{fix}_{\alpha}(i.j)| = \frac{1}{12}(96) = 6
$$

if we where don't it with 3 colors we use S_3 instead of S_2 which we used here

• How many different ways are there to 3-color the edges of a regular tetrahedron up to symmetries fo a the tetrahedron?

 $Aut(tetrahedron) = A_4$

(hold one point and rotate base gets 3-cycles) (rotate 2 points get 2 2-cycles)

-
$$
X = \{R, B, G\}^{([4]^2)} 3^6 = 729
$$
 what is [4]² and why does [4]² = 6|

 $|\text{fix}_{\alpha}(\text{id}_4)| = 729$

– if we fix one point then we basically create 2 3-cycles for the edges (3 colors for each cycle and $3^2 = 9$

$$
|\text{fix}_{\alpha}(3\text{-cycle})| = 9
$$

– todo

$$
|\text{fix}_{\alpha}(22 - \text{cycle})| = 81
$$

then by PB since $A_4 = |S_4|/2 = 4!/2 = 12$ we have (also there are

$$
|\mathcal{O}_{\alpha}| = \frac{1}{12} \sum_{g \in A_4} |\text{fix}_{\alpha}(g)| = \frac{1}{12}(729 + 9 \cdot 8 + 81 \cdot 3) = 87
$$

since there are $\frac{4\cdot3\cdot2}{3} = 8$ 3-cycles and $\frac{\frac{4\cdot3\cdot2\cdot1}{2}}{2} = 3$ 2 2-cycles